Skip to content

fastflowtransform.run_executor

schedule

schedule(levels, jobs, fail_policy, run_node, before=None, on_error=None, logger=None, engine_abbr='', name_width=28)

Run levels sequentially; within a level run up to jobs nodes in parallel.

Source code in src/fastflowtransform/run_executor.py
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
def schedule(
    levels: list[list[str]],
    jobs: int,
    fail_policy: FailPolicy,
    run_node: Callable[[str], None],
    before: Callable[..., None] | None = None,
    on_error: Callable[[str, BaseException], None] | None = None,
    logger: LogQueue | None = None,
    engine_abbr: str = "",
    name_width: int = 28,
) -> ScheduleResult:
    """Run levels sequentially; within a level run up to `jobs` nodes in parallel."""
    per_node: dict[str, float] = {}
    failed: dict[str, BaseException] = {}
    per_node_lock = threading.Lock()
    t_total0 = perf_counter()

    for lvl_idx, lvl in enumerate(levels, start=1):
        had_error, _, _, _ = _run_level(
            lvl_idx=lvl_idx,
            names=lvl,
            jobs=jobs,
            fail_policy=fail_policy,
            before_cb=before,
            run_node=run_node,
            per_node=per_node,
            per_node_lock=per_node_lock,
            failed=failed,
            logger=logger,
            engine_abbr=engine_abbr,
            name_width=name_width,
        )
        if had_error:
            if on_error:
                # bereits pro Node best-effort gemeldet; keine Sammelmeldung hier
                pass
            break

    total = perf_counter() - t_total0
    return ScheduleResult(per_node_s=per_node, total_s=total, failed=failed)