Skip to content

fastflowtransform.executors.snowflake_snowpark

SnowflakeSnowparkExecutor

Bases: SqlIdentifierMixin, SnapshotSqlMixin, BaseExecutor[SNDF]

Source code in src/fastflowtransform/executors/snowflake_snowpark.py
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
class SnowflakeSnowparkExecutor(SqlIdentifierMixin, SnapshotSqlMixin, BaseExecutor[SNDF]):
    ENGINE_NAME = "snowflake_snowpark"
    """Snowflake executor operating on Snowpark DataFrames (no pandas)."""
    _BUDGET_GUARD = BudgetGuard(
        env_var="FF_SF_MAX_BYTES",
        estimator_attr="_estimate_query_bytes",
        engine_label="Snowflake",
        what="query",
    )

    def __init__(self, cfg: dict):
        # cfg: {account, user, password, warehouse, database, schema, role?}
        self.session = Session.builder.configs(cfg).create()
        self.database = cfg["database"]
        self.schema = cfg["schema"]

        self.allow_create_schema: bool = bool(cfg["allow_create_schema"])
        self._ensure_schema()

        # Provide a tiny testing shim so tests can call executor.con.execute("SQL")
        self.con = _SFCursorShim(self.session)

    # ---------- Cost estimation & central execution ----------

    def _estimate_query_bytes(self, sql: str) -> int | None:
        """
        Best-effort Snowflake bytes estimation.

        Uses `EXPLAIN USING TEXT` and tries to extract a "bytes=<n>"-style
        metric from the textual plan. If parsing fails or Snowflake doesn't
        expose such info, returns None and the guard is effectively disabled.
        """
        try:
            body = self._selectable_body(sql)
        except Exception:
            body = sql

        try:
            rows = self.session.sql(f"EXPLAIN USING JSON {body}").collect()
            if not rows:
                return None

            parts: list[str] = []
            for r in rows:
                try:
                    parts.append(str(r[0]))
                except Exception:
                    as_dict: dict[str, Any] = getattr(r, "asDict", lambda: {})()
                    if as_dict:
                        parts.extend(str(v) for v in as_dict.values())

            plan_text = "\n".join(parts).strip()
            if not plan_text:
                return None

            try:
                plan_data = json.loads(plan_text)
            except Exception:
                return None

            bytes_val = self._extract_bytes_from_plan(plan_data)
            if bytes_val is None or bytes_val <= 0:
                return None
            return bytes_val
        except Exception:
            # Any parsing / EXPLAIN issues → no estimate, guard skipped
            return None

    def _extract_bytes_from_plan(self, plan_data: Any) -> int | None:
        def _to_int(value: Any) -> int | None:
            if value is None:
                return None
            try:
                return int(value)
            except Exception:
                return None

        if isinstance(plan_data, dict):
            global_stats = plan_data.get("GlobalStats") or plan_data.get("globalStats")
            if isinstance(global_stats, dict):
                candidate = _to_int(
                    global_stats.get("bytesAssigned") or global_stats.get("bytes_assigned")
                )
                if candidate:
                    return candidate
            for val in plan_data.values():
                bytes_val = self._extract_bytes_from_plan(val)
                if bytes_val:
                    return bytes_val
        elif isinstance(plan_data, list):
            for item in plan_data:
                bytes_val = self._extract_bytes_from_plan(item)
                if bytes_val:
                    return bytes_val
        return None

    def _execute_sql(self, sql: str) -> SNDF:
        """
        Central Snowflake SQL runner.

        - Returns a Snowpark DataFrame (same as session.sql).
        - Records best-effort query stats for run_results.json.
        """

        def _exec() -> SNDF:
            return self.session.sql(sql)

        return run_sql_with_budget(
            self,
            sql,
            guard=self._BUDGET_GUARD,
            exec_fn=_exec,
            estimate_fn=self._estimate_query_bytes,
        )

    def _exec_many(self, sql: str) -> None:
        """
        Execute multiple SQL statements separated by ';' on the same connection.
        Snowflake normally accepts one statement per execute(), so we split here.
        """
        for stmt in (part.strip() for part in sql.split(";")):
            if not stmt:
                continue
            self._execute_sql(stmt).collect()

    # ---------- Helpers ----------
    def _q(self, s: str) -> str:
        return '"' + s.replace('"', '""') + '"'

    def _quote_identifier(self, ident: str) -> str:
        # Keep identifiers unquoted to match legacy Snowflake behaviour.
        return ident

    def _default_schema(self) -> str | None:
        return self.schema

    def _default_catalog(self) -> str | None:
        return self.database

    def _should_include_catalog(
        self, catalog: str | None, schema: str | None, *, explicit: bool
    ) -> bool:
        # Always include database when present; Snowflake expects DB.SCHEMA.TABLE.
        return bool(catalog)

    def _qualified(self, rel: str) -> str:
        # DATABASE.SCHEMA.TABLE  (no quotes)
        return self._qualify_identifier(rel, quote=False)

    def _ensure_schema(self) -> None:
        """
        Best-effort schema creation when allow_create_schema=True.

        Mirrors BigQuery's `_ensure_dataset` behaviour:
        - If the flag is false → do nothing.
        - If true → `CREATE SCHEMA IF NOT EXISTS "DB"."SCHEMA"`.
        """
        if not getattr(self, "allow_create_schema", False):
            return
        if not self.database or not self.schema:
            # Misconfigured; let downstream errors surface naturally.
            return

        db = self._q(self.database)
        sch = self._q(self.schema)
        with suppress(Exception):
            # Fully qualified CREATE SCHEMA is allowed in Snowflake.
            self.session.sql(f"CREATE SCHEMA IF NOT EXISTS {db}.{sch}").collect()
            # Best-effort; permission issues or race conditions shouldn't crash the executor.
            # If the schema truly doesn't exist and we can't create it, later queries will fail
            # with a clearer engine error.

    # ---------- Frame-Hooks ----------
    def _read_relation(self, relation: str, node: Node, deps: Iterable[str]) -> SNDF:
        df = self.session.table(self._qualified(relation))
        # Present a *logical* lowercase schema to Python models:
        lowered = [c.lower() for c in df.schema.names]
        return df.toDF(*lowered)

    def _materialize_relation(self, relation: str, df: SNDF, node: Node) -> None:
        if not self._is_frame(df):
            raise TypeError("Snowpark model must return a Snowpark DataFrame")

        # Normalize to uppercase for storage in Snowflake
        cols = list(df.schema.names)
        upper_cols = [c.upper() for c in cols]
        if cols != upper_cols:
            df = df.toDF(*upper_cols)

        start = perf_counter()
        df.write.save_as_table(self._qualified(relation), mode="overwrite")
        duration_ms = int((perf_counter() - start) * 1000)
        bytes_est = self._estimate_frame_bytes(df)
        self._record_query_stats(
            QueryStats(
                bytes_processed=bytes_est,
                rows=None,
                duration_ms=duration_ms,
            )
        )

    def _estimate_frame_bytes(self, df: SNDF) -> int | None:
        """
        Best-effort bytes estimate for a Snowpark DataFrame.

        Strategy:
        1) Use DataFrame.queries["queries"] (public Snowpark API) to get SQL.
        2) Optionally fall back to df._plan.sql() if queries is missing/empty.
        3) Run our existing _estimate_query_bytes(sql_text).
        """
        try:
            sql_text = self._snowpark_df_sql(df)
            if not isinstance(sql_text, str) or not sql_text.strip():
                return None
            return self._estimate_query_bytes(sql_text)
        except Exception:
            return None

    def _snowpark_df_sql(self, df: Any) -> str | None:
        """
        Extract the main SQL statement for a Snowpark DataFrame.

        Uses the documented public APIs:
        - DataFrame.queries -> {"queries": [sql1, sql2, ...], "post_actions": [...]}
        - Optionally falls back to df._plan.sql() if needed.
        """
        # 1) Primary source: DataFrame.queries
        queries_dict = getattr(df, "queries", None)

        if isinstance(queries_dict, dict):
            queries = queries_dict.get("queries")
            if isinstance(queries, list) and queries:
                # Pick the most likely "main" query.
                # Snowflake examples use queries['queries'][0],
                # but we can be a bit safer and pick the longest non-empty SQL.
                candidates = [q.strip() for q in queries if isinstance(q, str) and q.strip()]
                if candidates:
                    # Heuristic: longest SQL string is usually the main SELECT/CTE.
                    return max(candidates, key=len)

        # 2) Fallback: internal plan (undocumented but widely used)
        plan = getattr(df, "_plan", None)
        if plan is not None:
            # Prefer simplified plan if available
            with suppress(Exception):
                simplify = getattr(plan, "simplify", None)
                if callable(simplify):
                    simplified = simplify()
                    to_sql = getattr(simplified, "sql", None)
                    if callable(to_sql):
                        sql = to_sql()
                        if isinstance(sql, str) and sql.strip():
                            return sql.strip()

            # Raw plan.sql()
            with suppress(Exception):
                to_sql = getattr(plan, "sql", None)
                if callable(to_sql):
                    sql = to_sql()
                    if isinstance(sql, str) and sql.strip():
                        return sql.strip()

        return None

    def _create_view_over_table(self, view_name: str, backing_table: str, node: Node) -> None:
        qv = self._qualified(view_name)
        qb = self._qualified(backing_table)
        self._execute_sql(f"CREATE OR REPLACE VIEW {qv} AS SELECT * FROM {qb}").collect()

    def _validate_required(
        self, node_name: str, inputs: Any, requires: dict[str, set[str]]
    ) -> None:
        if not requires:
            return

        def cols(df: SNDF) -> set[str]:
            # Compare in lowercase to be case-insensitive for Snowflake
            return {c.lower() for c in df.schema.names}

        # Normalize the required sets too
        normalized_requires = {rel: {c.lower() for c in needed} for rel, needed in requires.items()}

        errors: list[str] = []

        if isinstance(inputs, SNDF):
            need = next(iter(normalized_requires.values()), set())
            missing = need - cols(inputs)
            if missing:
                errors.append(f"- missing columns: {sorted(missing)} | have={sorted(cols(inputs))}")
        else:
            for rel, need in normalized_requires.items():
                if rel not in inputs:
                    errors.append(f"- missing dependency key '{rel}'")
                    continue
                missing = need - cols(inputs[rel])
                if missing:
                    errors.append(
                        f"- [{rel}] missing: {sorted(missing)} | have={sorted(cols(inputs[rel]))}"
                    )

        if errors:
            raise ValueError(
                "Required columns check failed for Snowpark model "
                f"'{node_name}'.\n" + "\n".join(errors)
            )

    def _columns_of(self, frame: SNDF) -> list[str]:
        return list(frame.schema.names)

    def _is_frame(self, obj: Any) -> bool:
        # Accept real Snowpark DataFrames and test doubles with a compatible surface.
        schema = getattr(obj, "schema", None)
        return isinstance(obj, SNDF) or (
            schema is not None
            and hasattr(schema, "names")
            and callable(getattr(obj, "collect", None))
        )

    def _frame_name(self) -> str:
        return "Snowpark"

    # ---- SQL hooks ----
    def _this_identifier(self, node: Node) -> str:
        """
        Identifier for {{ this }} in SQL models.
        Use fully-qualified DB.SCHEMA.TABLE so all build/read/test paths agree.
        """
        return self._qualify_identifier(relation_for(node.name), quote=False)

    def _format_source_reference(
        self, cfg: dict[str, Any], source_name: str, table_name: str
    ) -> str:
        if cfg.get("location"):
            raise NotImplementedError("Snowflake executor does not support path-based sources.")

        ident = cfg.get("identifier")
        if not ident:
            raise KeyError(f"Source {source_name}.{table_name} missing identifier")

        sch = self._pick_schema(cfg)
        db = self._pick_catalog(cfg, sch)
        if not db or not sch:
            raise KeyError(
                f"Source {source_name}.{table_name} missing database/schema for Snowflake"
            )
        return self._qualify_identifier(ident, schema=sch, catalog=db, quote=False)

    def _create_or_replace_view(self, target_sql: str, select_body: str, node: Node) -> None:
        self._execute_sql(f"CREATE OR REPLACE VIEW {target_sql} AS {select_body}").collect()

    def _create_or_replace_table(self, target_sql: str, select_body: str, node: Node) -> None:
        self._execute_sql(f"CREATE OR REPLACE TABLE {target_sql} AS {select_body}").collect()

    def _create_or_replace_view_from_table(
        self, view_name: str, backing_table: str, node: Node
    ) -> None:
        view_id = self._qualified(view_name)
        back_id = self._qualified(backing_table)
        self._execute_sql(f"CREATE OR REPLACE VIEW {view_id} AS SELECT * FROM {back_id}").collect()

    def _format_test_table(self, table: str | None) -> str | None:
        formatted = super()._format_test_table(table)
        if formatted is None:
            return None

        # If it's already qualified (DB.SCHEMA.TABLE) or quoted, leave it alone.
        if "." in formatted or '"' in formatted:
            return formatted

        # Otherwise, treat it as a logical relation name and fully-qualify it
        # with the executor's configured database/schema.
        return self._qualified(formatted)

    # ---- Meta hook ----
    def on_node_built(self, node: Node, relation: str, fingerprint: str) -> None:
        """After successful materialization, upsert _ff_meta (best-effort)."""
        ensure_meta_table(self)
        upsert_meta(self, node.name, relation, fingerprint, "snowflake_snowpark")

    # ── Incremental API (parity with DuckDB/PG) ──────────────────────────
    def exists_relation(self, relation: str) -> bool:
        """Check existence via information_schema.tables."""
        db = self._q(self.database)
        schema_lit = f"'{self.schema.upper()}'"
        rel_lit = f"'{relation.upper()}'"
        q = f"""
        select 1
        from {db}.information_schema.tables
        where upper(table_schema) = {schema_lit}
            and upper(table_name) = {rel_lit}
        limit 1
        """
        try:
            return bool(self._execute_sql(q).collect())
        except Exception:
            return False

    def create_table_as(self, relation: str, select_sql: str) -> None:
        body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
        self._execute_sql(
            f"CREATE OR REPLACE TABLE {self._qualified(relation)} AS {body}"
        ).collect()

    def full_refresh_table(self, relation: str, select_sql: str) -> None:
        """
        Engine-specific full refresh for incremental fallbacks.
        """
        body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
        self._execute_sql(
            f"CREATE OR REPLACE TABLE {self._qualified(relation)} AS {body}"
        ).collect()

    def incremental_insert(self, relation: str, select_sql: str) -> None:
        body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
        self._execute_sql(f"INSERT INTO {self._qualified(relation)} {body}").collect()

    def incremental_merge(self, relation: str, select_sql: str, unique_key: list[str]) -> None:
        body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
        pred = " AND ".join([f"t.{k}=s.{k}" for k in unique_key]) or "FALSE"
        qrel = self._qualified(relation)

        # 1) Delete matching keys
        delete_sql = f"""
        DELETE FROM {qrel} AS t
        USING ({body}) AS s
        WHERE {pred}
        """
        self._execute_sql(delete_sql).collect()

        # 2) Insert all rows from the delta
        insert_sql = f"INSERT INTO {qrel} SELECT * FROM ({body})"
        self._execute_sql(insert_sql).collect()

    def alter_table_sync_schema(
        self, relation: str, select_sql: str, *, mode: str = "append_new_columns"
    ) -> None:
        """
        Best-effort additive schema sync:
        - infer SELECT schema via LIMIT 0
        - add missing columns as STRING
        """
        if mode not in {"append_new_columns", "sync_all_columns"}:
            return

        qrel = self._qualified(relation)

        # Use identifiers in FROM, but *string literals* in WHERE
        db_ident = self._q(self.database)
        schema_lit = self.schema.replace("'", "''")
        rel_lit = relation.replace("'", "''")

        try:
            existing = {
                r[0]
                for r in self._execute_sql(
                    f"""
                    select column_name
                    from {db_ident}.information_schema.columns
                    where upper(table_schema) = upper('{schema_lit}')
                    and upper(table_name)   = upper('{rel_lit}')
                    """
                ).collect()
            }
        except Exception:
            existing = set()

        # Probe SELECT columns
        body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
        probe = self.session.sql(f"SELECT * FROM ({body}) q WHERE 1=0")
        probe_cols = list(probe.schema.names)

        to_add = [c for c in probe_cols if c not in existing]
        if not to_add:
            return

        # Column names are identifiers → _q is correct here
        cols_sql = ", ".join(f"{self._q(c)} STRING" for c in to_add)
        self._execute_sql(f"ALTER TABLE {qrel} ADD COLUMN {cols_sql}").collect()

    # ---- Snapshot API (mixin hooks) --------------------------------------
    def _snapshot_target_identifier(self, rel_name: str) -> str:
        return self._qualified(rel_name)

    def _snapshot_current_timestamp(self) -> str:
        return "CURRENT_TIMESTAMP()"

    def _snapshot_create_keyword(self) -> str:
        return "CREATE OR REPLACE TABLE"

    def _snapshot_null_timestamp(self) -> str:
        return "CAST(NULL AS TIMESTAMP)"

    def _snapshot_null_hash(self) -> str:
        return "CAST(NULL AS VARCHAR)"

    def _snapshot_hash_expr(self, check_cols: list[str], src_alias: str) -> str:
        concat_expr = self._snapshot_concat_expr(check_cols, src_alias)
        return f"CAST(MD5({concat_expr}) AS VARCHAR)"

    def _snapshot_cast_as_string(self, expr: str) -> str:
        return f"CAST({expr} AS VARCHAR)"

    def _snapshot_source_ref(
        self, rel_name: str, select_body: str
    ) -> tuple[str, Callable[[], None]]:
        src_name = f"__ff_snapshot_src_{rel_name}".replace(".", "_")
        src_quoted = self._q(src_name)
        self._execute_sql(
            f"CREATE OR REPLACE TEMPORARY VIEW {src_quoted} AS {select_body}"
        ).collect()

        def _cleanup() -> None:
            self._execute_sql(f"DROP VIEW IF EXISTS {src_quoted}").collect()

        return src_quoted, _cleanup

    def execute_hook_sql(self, sql: str) -> None:
        """
        Execute one SQL statement for pre/post/on_run hooks.
        """
        self._exec_many(sql)

    # ---- Unit-test helpers -----------------------------------------------

    def utest_read_relation(self, relation: str) -> pd.DataFrame:
        """
        Read a relation into a pandas DataFrame for unit-test assertions.

        We use Snowpark to read the table and convert to pandas,
        normalizing column names to lowercase to match _read_relation.
        """
        df = self.session.table(self._qualified(relation))
        # Mirror _read_relation: present lowercase schema to the test layer
        lowered = [c.lower() for c in df.schema.names]
        df = df.toDF(*lowered)

        to_pandas = getattr(df, "to_pandas", None)

        pdf: pd.DataFrame
        if callable(to_pandas):
            pdf = cast(pd.DataFrame, to_pandas())
        else:
            rows = df.collect()
            records = [r.asDict() for r in rows]
            pdf = pd.DataFrame.from_records(records)

        # Return a new DF with lowercase columns (no attribute assignment)
        return pdf.rename(columns=lambda c: str(c).lower())

    def utest_load_relation_from_rows(self, relation: str, rows: list[dict]) -> None:
        """
        Load rows into a Snowflake table for unit tests (replace if exists).

        We build a Snowpark DataFrame from the Python rows and overwrite the
        target table using save_as_table().
        """
        # Best-effort: if rows are empty, create an empty table with no rows.
        # We assume at least one row in normal test usage so we can infer schema.
        if not rows:
            # Without any rows we don't know the schema; create a trivial
            # single-column table to surface the situation clearly.
            tmp_df = self.session.create_dataframe([[None]], schema=["__empty__"])
            tmp_df.write.save_as_table(self._qualified(relation), mode="overwrite")
            return

        # Infer column order from the first row
        first = rows[0]
        columns = list(first.keys())

        # Normalize data to a list of lists in a fixed column order
        data = [[row.get(col) for col in columns] for row in rows]

        df = self.session.create_dataframe(data, schema=columns)

        # Store with uppercase column names in Snowflake (conventional)
        upper_cols = [c.upper() for c in columns]
        if columns != upper_cols:
            df = df.toDF(*upper_cols)

        # Overwrite the target table
        df.write.save_as_table(self._qualified(relation), mode="overwrite")

    def utest_clean_target(self, relation: str) -> None:
        """
        For unit tests: drop any table or view with this name in the configured
        database/schema.

        We:
          - try DROP VIEW IF EXISTS DB.SCHEMA.REL
          - try DROP TABLE IF EXISTS DB.SCHEMA.REL

        and ignore "not a view/table" style errors so it doesn't matter what
        kind of object is currently there - after this, nothing with that name
        should remain (best-effort).
        """
        qualified = self._qualified(relation)

        # Drop view first; ignore errors if it's actually a table or doesn't exist.
        with suppress(Exception):
            self.session.sql(f"DROP VIEW IF EXISTS {qualified}").collect()

        # Then drop table; ignore errors if it's actually a view or doesn't exist.
        with suppress(Exception):
            self.session.sql(f"DROP TABLE IF EXISTS {qualified}").collect()

ENGINE_NAME class-attribute instance-attribute

ENGINE_NAME = 'snowflake_snowpark'

Snowflake executor operating on Snowpark DataFrames (no pandas).

on_node_built

on_node_built(node, relation, fingerprint)

After successful materialization, upsert _ff_meta (best-effort).

Source code in src/fastflowtransform/executors/snowflake_snowpark.py
397
398
399
400
def on_node_built(self, node: Node, relation: str, fingerprint: str) -> None:
    """After successful materialization, upsert _ff_meta (best-effort)."""
    ensure_meta_table(self)
    upsert_meta(self, node.name, relation, fingerprint, "snowflake_snowpark")

exists_relation

exists_relation(relation)

Check existence via information_schema.tables.

Source code in src/fastflowtransform/executors/snowflake_snowpark.py
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
def exists_relation(self, relation: str) -> bool:
    """Check existence via information_schema.tables."""
    db = self._q(self.database)
    schema_lit = f"'{self.schema.upper()}'"
    rel_lit = f"'{relation.upper()}'"
    q = f"""
    select 1
    from {db}.information_schema.tables
    where upper(table_schema) = {schema_lit}
        and upper(table_name) = {rel_lit}
    limit 1
    """
    try:
        return bool(self._execute_sql(q).collect())
    except Exception:
        return False

full_refresh_table

full_refresh_table(relation, select_sql)

Engine-specific full refresh for incremental fallbacks.

Source code in src/fastflowtransform/executors/snowflake_snowpark.py
426
427
428
429
430
431
432
433
def full_refresh_table(self, relation: str, select_sql: str) -> None:
    """
    Engine-specific full refresh for incremental fallbacks.
    """
    body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
    self._execute_sql(
        f"CREATE OR REPLACE TABLE {self._qualified(relation)} AS {body}"
    ).collect()

alter_table_sync_schema

alter_table_sync_schema(relation, select_sql, *, mode='append_new_columns')

Best-effort additive schema sync: - infer SELECT schema via LIMIT 0 - add missing columns as STRING

Source code in src/fastflowtransform/executors/snowflake_snowpark.py
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
def alter_table_sync_schema(
    self, relation: str, select_sql: str, *, mode: str = "append_new_columns"
) -> None:
    """
    Best-effort additive schema sync:
    - infer SELECT schema via LIMIT 0
    - add missing columns as STRING
    """
    if mode not in {"append_new_columns", "sync_all_columns"}:
        return

    qrel = self._qualified(relation)

    # Use identifiers in FROM, but *string literals* in WHERE
    db_ident = self._q(self.database)
    schema_lit = self.schema.replace("'", "''")
    rel_lit = relation.replace("'", "''")

    try:
        existing = {
            r[0]
            for r in self._execute_sql(
                f"""
                select column_name
                from {db_ident}.information_schema.columns
                where upper(table_schema) = upper('{schema_lit}')
                and upper(table_name)   = upper('{rel_lit}')
                """
            ).collect()
        }
    except Exception:
        existing = set()

    # Probe SELECT columns
    body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
    probe = self.session.sql(f"SELECT * FROM ({body}) q WHERE 1=0")
    probe_cols = list(probe.schema.names)

    to_add = [c for c in probe_cols if c not in existing]
    if not to_add:
        return

    # Column names are identifiers → _q is correct here
    cols_sql = ", ".join(f"{self._q(c)} STRING" for c in to_add)
    self._execute_sql(f"ALTER TABLE {qrel} ADD COLUMN {cols_sql}").collect()

execute_hook_sql

execute_hook_sql(sql)

Execute one SQL statement for pre/post/on_run hooks.

Source code in src/fastflowtransform/executors/snowflake_snowpark.py
539
540
541
542
543
def execute_hook_sql(self, sql: str) -> None:
    """
    Execute one SQL statement for pre/post/on_run hooks.
    """
    self._exec_many(sql)

utest_read_relation

utest_read_relation(relation)

Read a relation into a pandas DataFrame for unit-test assertions.

We use Snowpark to read the table and convert to pandas, normalizing column names to lowercase to match _read_relation.

Source code in src/fastflowtransform/executors/snowflake_snowpark.py
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
def utest_read_relation(self, relation: str) -> pd.DataFrame:
    """
    Read a relation into a pandas DataFrame for unit-test assertions.

    We use Snowpark to read the table and convert to pandas,
    normalizing column names to lowercase to match _read_relation.
    """
    df = self.session.table(self._qualified(relation))
    # Mirror _read_relation: present lowercase schema to the test layer
    lowered = [c.lower() for c in df.schema.names]
    df = df.toDF(*lowered)

    to_pandas = getattr(df, "to_pandas", None)

    pdf: pd.DataFrame
    if callable(to_pandas):
        pdf = cast(pd.DataFrame, to_pandas())
    else:
        rows = df.collect()
        records = [r.asDict() for r in rows]
        pdf = pd.DataFrame.from_records(records)

    # Return a new DF with lowercase columns (no attribute assignment)
    return pdf.rename(columns=lambda c: str(c).lower())

utest_load_relation_from_rows

utest_load_relation_from_rows(relation, rows)

Load rows into a Snowflake table for unit tests (replace if exists).

We build a Snowpark DataFrame from the Python rows and overwrite the target table using save_as_table().

Source code in src/fastflowtransform/executors/snowflake_snowpark.py
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
def utest_load_relation_from_rows(self, relation: str, rows: list[dict]) -> None:
    """
    Load rows into a Snowflake table for unit tests (replace if exists).

    We build a Snowpark DataFrame from the Python rows and overwrite the
    target table using save_as_table().
    """
    # Best-effort: if rows are empty, create an empty table with no rows.
    # We assume at least one row in normal test usage so we can infer schema.
    if not rows:
        # Without any rows we don't know the schema; create a trivial
        # single-column table to surface the situation clearly.
        tmp_df = self.session.create_dataframe([[None]], schema=["__empty__"])
        tmp_df.write.save_as_table(self._qualified(relation), mode="overwrite")
        return

    # Infer column order from the first row
    first = rows[0]
    columns = list(first.keys())

    # Normalize data to a list of lists in a fixed column order
    data = [[row.get(col) for col in columns] for row in rows]

    df = self.session.create_dataframe(data, schema=columns)

    # Store with uppercase column names in Snowflake (conventional)
    upper_cols = [c.upper() for c in columns]
    if columns != upper_cols:
        df = df.toDF(*upper_cols)

    # Overwrite the target table
    df.write.save_as_table(self._qualified(relation), mode="overwrite")

utest_clean_target

utest_clean_target(relation)

For unit tests: drop any table or view with this name in the configured database/schema.

We
  • try DROP VIEW IF EXISTS DB.SCHEMA.REL
  • try DROP TABLE IF EXISTS DB.SCHEMA.REL

and ignore "not a view/table" style errors so it doesn't matter what kind of object is currently there - after this, nothing with that name should remain (best-effort).

Source code in src/fastflowtransform/executors/snowflake_snowpark.py
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
def utest_clean_target(self, relation: str) -> None:
    """
    For unit tests: drop any table or view with this name in the configured
    database/schema.

    We:
      - try DROP VIEW IF EXISTS DB.SCHEMA.REL
      - try DROP TABLE IF EXISTS DB.SCHEMA.REL

    and ignore "not a view/table" style errors so it doesn't matter what
    kind of object is currently there - after this, nothing with that name
    should remain (best-effort).
    """
    qualified = self._qualified(relation)

    # Drop view first; ignore errors if it's actually a table or doesn't exist.
    with suppress(Exception):
        self.session.sql(f"DROP VIEW IF EXISTS {qualified}").collect()

    # Then drop table; ignore errors if it's actually a view or doesn't exist.
    with suppress(Exception):
        self.session.sql(f"DROP TABLE IF EXISTS {qualified}").collect()

run_sql

run_sql(node, env)
Orchestrate SQL models

1) Render Jinja (ref/source/this) and strip leading {{ config(...) }}. 2) If the SQL is full DDL (CREATE …), execute it verbatim (passthrough). 3) Otherwise, normalize to CREATE OR REPLACE {TABLE|VIEW} AS . The body is CTE-aware (keeps WITH … SELECT … intact).

On failure, raise ModelExecutionError with a helpful snippet.

Source code in src/fastflowtransform/executors/base.py
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
def run_sql(self, node: Node, env: Environment) -> None:
    """
    Orchestrate SQL models:
      1) Render Jinja (ref/source/this) and strip leading {{ config(...) }}.
      2) If the SQL is full DDL (CREATE …), execute it verbatim (passthrough).
      3) Otherwise, normalize to CREATE OR REPLACE {TABLE|VIEW} AS <body>.
         The body is CTE-aware (keeps WITH … SELECT … intact).
    On failure, raise ModelExecutionError with a helpful snippet.
    """
    meta = getattr(node, "meta", {}) or {}
    if self._meta_is_incremental(meta):
        # Delegates to incremental engine: render, schema sync, merge/insert, etc.
        return _ff_incremental.run_or_dispatch(self, node, env)

    if self._meta_is_snapshot(meta):
        # Snapshots are executed via the dedicated CLI: `fft snapshot run`.
        raise ModelExecutionError(
            node_name=node.name,
            relation=relation_for(node.name),
            message=(
                "Snapshot models cannot be executed via 'fft run'. "
                "Use 'fft snapshot run' instead."
            ),
            sql_snippet="",
        )

    sql_rendered = self.render_sql(
        node,
        env,
        ref_resolver=lambda name: self._resolve_ref(name, env),
        source_resolver=self._resolve_source,
    )
    sql = self._strip_leading_config(sql_rendered).strip()

    materialization = (node.meta or {}).get("materialized", "table")
    if materialization == "ephemeral":
        return

    # 1) Direct DDL passthrough (CREATE [OR REPLACE] {TABLE|VIEW} …)
    if self._looks_like_direct_ddl(sql):
        try:
            self._execute_sql_direct(sql, node)
            return
        except NotImplementedError:
            # Engine doesn't implement direct DDL → fall back to normalized materialization.
            pass
        except Exception as e:
            raise ModelExecutionError(
                node_name=node.name,
                relation=relation_for(node.name),
                message=str(e),
                sql_snippet=sql,
            ) from e

    # 2) Normalized materialization path (CTE-safe body)
    body = self._selectable_body(sql).rstrip(" ;\n\t")
    target_sql = self._format_relation_for_ref(node.name)

    # Centralized SQL preview logging (applies to ALL engines)
    preview = (
        f"=== MATERIALIZE ===\n"
        f"-- model: {node.name}\n"
        f"-- materialized: {materialization}\n"
        f"-- target: {target_sql}\n"
        f"{body}\n"
    )
    echo_debug(preview)

    try:
        self._apply_sql_materialization(node, target_sql, body, materialization)
    except Exception as e:
        preview = f"-- materialized={materialization}\n-- target={target_sql}\n{body}"
        raise ModelExecutionError(
            node_name=node.name,
            relation=relation_for(node.name),
            message=str(e),
            sql_snippet=preview,
        ) from e

configure_query_budget_limit

configure_query_budget_limit(limit)

Inject a configured per-query byte limit (e.g. from budgets.yml).

Source code in src/fastflowtransform/executors/base.py
501
502
503
504
505
506
507
508
509
510
511
512
513
def configure_query_budget_limit(self, limit: int | None) -> None:
    """
    Inject a configured per-query byte limit (e.g. from budgets.yml).
    """
    if limit is None:
        self._ff_configured_query_limit = None
        return
    try:
        iv = int(limit)
    except Exception:
        self._ff_configured_query_limit = None
        return
    self._ff_configured_query_limit = iv if iv > 0 else None

reset_node_stats

reset_node_stats()

Reset per-node statistics buffer.

The run engine calls this before executing a model so that all stats recorded via _record_query_stats(...) belong to that node.

Source code in src/fastflowtransform/executors/base.py
553
554
555
556
557
558
559
560
561
def reset_node_stats(self) -> None:
    """
    Reset per-node statistics buffer.

    The run engine calls this before executing a model so that all
    stats recorded via `_record_query_stats(...)` belong to that node.
    """
    # just clear the buffer; next recording will re-create it
    self._ff_query_stats_buffer = []

get_node_stats

get_node_stats()

Aggregate buffered QueryStats into a simple dict:

{
  "bytes_scanned": <sum>,
  "rows": <sum>,
  "query_duration_ms": <sum>,
}

Called by the run engine after a node finishes.

Source code in src/fastflowtransform/executors/base.py
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
def get_node_stats(self) -> dict[str, int]:
    """
    Aggregate buffered QueryStats into a simple dict:

        {
          "bytes_scanned": <sum>,
          "rows": <sum>,
          "query_duration_ms": <sum>,
        }

    Called by the run engine after a node finishes.
    """
    stats_list = self._drain_query_stats()
    if not stats_list:
        return {}

    total_bytes = 0
    total_rows = 0
    total_duration = 0

    for s in stats_list:
        if s.bytes_processed is not None:
            total_bytes += int(s.bytes_processed)
        if s.rows is not None:
            total_rows += int(s.rows)
        if s.duration_ms is not None:
            total_duration += int(s.duration_ms)

    return {
        "bytes_scanned": total_bytes,
        "rows": total_rows,
        "query_duration_ms": total_duration,
    }

run_python

run_python(node)

Execute the Python model for a given node and materialize its result.

Source code in src/fastflowtransform/executors/base.py
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
def run_python(self, node: Node) -> None:
    """Execute the Python model for a given node and materialize its result."""
    func = REGISTRY.py_funcs[node.name]
    deps = REGISTRY.nodes[node.name].deps or []

    self._reset_http_ctx(node)

    # arg = self._build_python_args(node, deps)
    args, argmap = self._build_python_inputs(node, deps)
    requires = REGISTRY.py_requires.get(node.name, {})
    # if deps:
    #     self._validate_required(node.name, arg, requires)
    if deps:
        # Required-columns check works against the mapping
        self._validate_required(node.name, argmap, requires)

    # out = self._execute_python_func(func, arg, node)
    out = self._execute_python_func(func, args, node)

    target = relation_for(node.name)
    meta = getattr(node, "meta", {}) or {}
    mat = self._resolve_materialization_strategy(meta)

    if mat == "incremental":
        self._materialize_incremental(target, out, node, meta)
    elif mat == "view":
        self._materialize_view(target, out, node)
    else:
        self._materialize_relation(target, out, node)

    self._snapshot_http_ctx(node)

snapshot_prune

snapshot_prune(relation, unique_key, keep_last, *, dry_run=False)

Delete older snapshot versions while keeping the most recent keep_last rows per business key (including the current row).

Source code in src/fastflowtransform/executors/_snapshot_sql_mixin.py
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    def snapshot_prune(
        self,
        relation: str,
        unique_key: list[str],
        keep_last: int,
        *,
        dry_run: bool = False,
    ) -> None:
        """
        Delete older snapshot versions while keeping the most recent `keep_last`
        rows per business key (including the current row).
        """
        ex = cast("BaseExecutor[Any]", self)

        if keep_last <= 0:
            return

        keys = [k for k in unique_key if k]
        if not keys:
            return

        target = self._snapshot_target_identifier(relation)
        vf = self.SNAPSHOT_VALID_FROM_COL  # type: ignore[attr-defined]

        key_select = ", ".join(keys)
        part_by = ", ".join(keys)

        ranked_sql = f"""
SELECT
  {key_select},
  {vf},
  ROW_NUMBER() OVER (
    PARTITION BY {part_by}
    ORDER BY {vf} DESC
  ) AS rn
FROM {target}
"""

        if dry_run:
            sql = f"""
WITH ranked AS (
  {ranked_sql}
)
SELECT COUNT(*) AS rows_to_delete
FROM ranked
WHERE rn > {int(keep_last)}
"""
            res = ex._execute_sql(sql)
            count = self._snapshot_fetch_count(res)
            echo(
                f"[DRY-RUN] snapshot_prune({relation}): would delete {count} row(s) "
                f"(keep_last={keep_last})"
            )
            return

        join_pred = " AND ".join([f"t.{k} = r.{k}" for k in keys])
        delete_sql = f"""
DELETE FROM {target} t
USING (
  {ranked_sql}
) r
WHERE
  r.rn > {int(keep_last)}
  AND {join_pred}
  AND t.{vf} = r.{vf}
"""
        ex._execute_sql(delete_sql)