Skip to content

fastflowtransform.executors.postgres

PostgresExecutor

Bases: SqlIdentifierMixin, SnapshotSqlMixin, BaseExecutor[DataFrame]

Source code in src/fastflowtransform/executors/postgres.py
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
class PostgresExecutor(SqlIdentifierMixin, SnapshotSqlMixin, BaseExecutor[pd.DataFrame]):
    ENGINE_NAME = "postgres"
    _DEFAULT_PG_ROW_WIDTH = 128
    _BUDGET_GUARD = BudgetGuard(
        env_var="FF_PG_MAX_BYTES",
        estimator_attr="_estimate_query_bytes",
        engine_label="Postgres",
        what="query",
    )

    def __init__(self, dsn: str, schema: str | None = None):
        """
        Initialize Postgres executor.

        dsn     e.g.: postgresql+psycopg://user:pass@localhost:5432/dbname
        schema  default schema for reads/writes (also used for search_path)
        """
        if not dsn:
            raise ProfileConfigError(
                "Postgres DSN not set. Hint: profiles.yml → postgres.dsn or env FF_PG_DSN."
            )
        self.engine: Engine = create_engine(dsn, future=True)
        self.schema = schema

        if self.schema:
            try:
                with self.engine.begin() as conn:
                    conn.execute(text(f"CREATE SCHEMA IF NOT EXISTS {self._q_ident(self.schema)}"))
            except SQLAlchemyError as exc:
                raise ProfileConfigError(
                    f"Failed to ensure schema '{self.schema}' exists: {exc}"
                ) from exc

        # ⇣ fastflowtransform.testing expects executor.con.execute("SQL")
        self.con = SAConnShim(self.engine, schema=self.schema)

    def _execute_sql_core(
        self,
        sql: str,
        *args: Any,
        conn: Connection,
        **kwargs: Any,
    ) -> Any:
        """
        Lowest-level SQL executor:

        - sets search_path
        - executes the statement via given connection
        - NO budget guard
        - NO timing / stats

        Used by both the high-level _execute_sql and maintenance helpers.
        """
        self._set_search_path(conn)
        return conn.execute(text(sql), *args, **kwargs)

    def _execute_sql_maintenance(
        self,
        sql: str,
        *args: Any,
        conn: Connection | None = None,
        **kwargs: Any,
    ) -> Any:
        """
        Utility/maintenance SQL:

        - sets search_path
        - NO budget guard
        - NO stats

        Intended for:
          - utest cleanup
          - ANALYZE
          - DDL that shouldn't be budget-accounted
        """
        if conn is None:
            with self.engine.begin() as local_conn:
                return self._execute_sql_core(sql, *args, conn=local_conn, **kwargs)
        else:
            return self._execute_sql_core(sql, *args, conn=conn, **kwargs)

    def _execute_sql(
        self,
        sql: str,
        *args: Any,
        conn: Connection | None = None,
        **kwargs: Any,
    ) -> Any:
        """
        Central Postgres SQL runner.

        All model-driven SQL in this executor should go through here.

        If `conn` is provided, reuse that connection (important for temp tables /
        snapshots). Otherwise, open a fresh transaction via engine.begin().

        Also records simple per-query stats for run_results.json.
        """

        def _exec() -> Any:
            if conn is None:
                with self.engine.begin() as local_conn:
                    return self._execute_sql_core(sql, *args, conn=local_conn, **kwargs)
            return self._execute_sql_core(sql, *args, conn=conn, **kwargs)

        def _rows(result: Any) -> int | None:
            rc = getattr(result, "rowcount", None)
            if isinstance(rc, int) and rc >= 0:
                return rc
            return None

        return run_sql_with_budget(
            self,
            sql,
            guard=self._BUDGET_GUARD,
            exec_fn=_exec,
            rowcount_extractor=_rows,
            estimate_fn=self._estimate_query_bytes,
        )

    def _analyze_relations(
        self,
        relations: Iterable[str],
        conn: Connection | None = None,
    ) -> None:
        """
        Run ANALYZE on the given relations.

        - Never goes through _execute_sql (avoids the budget guard recursion).
        - Uses passed-in conn if given, otherwise opens its own transaction.
        - Best-effort: logs and continues on failure.
        """
        owns_conn = False
        if conn is None:
            conn_ctx = self.engine.begin()
            conn = conn_ctx.__enter__()
            owns_conn = True
        try:
            self._set_search_path(conn)
            for rel in relations:
                try:
                    # If it already looks qualified, leave it; otherwise qualify.
                    qrel = self._qualified(rel) if "." not in rel else rel
                    conn.execute(text(f"ANALYZE {qrel}"))
                except Exception:
                    pass
        finally:
            if owns_conn:
                conn_ctx.__exit__(None, None, None)

    # --- Cost estimation for the shared BudgetGuard -----------------

    def _estimate_query_bytes(self, sql: str) -> int | None:
        """
        Best-effort bytes estimate for a SELECT-ish query using
        EXPLAIN (FORMAT JSON).

        Approximation: estimated_rows * avg_row_width (in bytes).
        Returns None if:
          - the query is not SELECT/CTE
          - EXPLAIN fails
          - the JSON structure is not what we expect
        """
        body = self._extract_select_like(sql)
        lower = body.lstrip().lower()
        if not lower.startswith(("select", "with")):
            # Only try to estimate for read-like queries
            return None

        explain_sql = f"EXPLAIN (FORMAT JSON) {body}"

        try:
            with self.engine.begin() as conn:
                self._set_search_path(conn)
                raw = conn.execute(text(explain_sql)).scalar()
        except Exception:
            return None

        if raw is None:
            return None

        try:
            data = json.loads(raw)
        except Exception:
            data = raw

        # Postgres JSON format: list with a single object
        if isinstance(data, list) and data:
            root = data[0]
        elif isinstance(data, dict):
            root = data
        else:
            return None

        plan = root.get("Plan")
        if not isinstance(plan, dict):
            if isinstance(root, dict) and "Node Type" in root:
                plan = root
            else:
                return None

        return self._estimate_bytes_from_plan(plan)

    def _estimate_bytes_from_plan(self, plan: dict[str, Any]) -> int | None:
        """
        Estimate bytes for the *model output* from the root plan node.

        Approximation: root.Plan Rows * root.Plan Width (or DEFAULT_PG_ROW_WIDTH
        if width is missing).
        """

        def _to_int(node: dict[str, Any], keys: tuple[str, ...]) -> int | None:
            for key in keys:
                val = node.get(key)
                if val is None:
                    continue
                try:
                    return int(val)
                except (TypeError, ValueError):
                    continue
            return None

        rows = _to_int(plan, ("Plan Rows", "Plan_Rows", "Rows"))
        width = _to_int(plan, ("Plan Width", "Plan_Width", "Width"))

        if rows is None and width is None:
            return None

        candidate: int | None

        if rows is not None and width is not None:
            candidate = rows * width
        elif rows is not None:
            candidate = rows * self._DEFAULT_PG_ROW_WIDTH
        else:
            candidate = width

        if candidate is None or candidate <= 0:
            return None

        return int(candidate)

    # --- Helpers ---------------------------------------------------------
    def _q_ident(self, ident: str) -> str:
        # Simple, safe quoting for identifiers
        return '"' + ident.replace('"', '""') + '"'

    def _quote_identifier(self, ident: str) -> str:
        return self._q_ident(ident)

    def _qualified(self, relname: str, schema: str | None = None) -> str:
        return self._qualify_identifier(relname, schema=schema)

    def _set_search_path(self, conn: Connection | SAConnShim) -> None:
        if self.schema:
            conn.execute(text(f"SET LOCAL search_path = {self._q_ident(self.schema)}"))

    def _extract_select_like(self, sql_or_body: str) -> str:
        """
        Normalize a SELECT/CTE body:
        - Accept full statements and strip everything before the first WITH/SELECT.
        - Strip trailing semicolons/whitespace.
        """
        s = (sql_or_body or "").lstrip()
        lower = s.lower()
        pos_with = lower.find("with")
        pos_select = lower.find("select")
        if pos_with == -1 and pos_select == -1:
            return s.rstrip(";\n\t ")
        start = min([p for p in (pos_with, pos_select) if p != -1])
        return s[start:].rstrip(";\n\t ")

    # ---------- IO ----------
    def _read_relation(self, relation: str, node: Node, deps: Iterable[str]) -> pd.DataFrame:
        qualified = self._qualified(relation)
        try:
            with self.engine.begin() as conn:
                if self.schema:
                    conn.execute(text(f'SET LOCAL search_path = "{self.schema}"'))
                return pd.read_sql_query(text(f"select * from {qualified}"), conn)
        except ProgrammingError as e:
            raise e

    def _materialize_relation(self, relation: str, df: pd.DataFrame, node: Node) -> None:
        self._write_dataframe_with_stats(relation, df, node)

    def _write_dataframe_with_stats(self, relation: str, df: pd.DataFrame, node: Node) -> None:
        start = perf_counter()
        try:
            df.to_sql(
                relation,
                self.engine,
                if_exists="replace",
                index=False,
                schema=self.schema,
                method="multi",
            )
        except SQLAlchemyError as e:
            raise ModelExecutionError(
                node_name=node.name, relation=self._qualified(relation), message=str(e)
            ) from e
        else:
            self._analyze_relations([relation])
            self._record_dataframe_stats(df, int((perf_counter() - start) * 1000))

    def _record_dataframe_stats(self, df: pd.DataFrame, duration_ms: int) -> None:
        rows = len(df)
        bytes_estimate = int(df.memory_usage(deep=True).sum()) if rows > 0 else 0
        bytes_val = bytes_estimate if bytes_estimate > 0 else None
        self._record_query_stats(
            QueryStats(
                bytes_processed=bytes_val,
                rows=rows if rows > 0 else None,
                duration_ms=duration_ms,
            )
        )

    # ---------- Python view helper ----------
    def _create_or_replace_view_from_table(
        self, view_name: str, backing_table: str, node: Node
    ) -> None:
        q_view = self._qualified(view_name)
        q_back = self._qualified(backing_table)
        try:
            with self.engine.begin() as conn:
                self._execute_sql(f"DROP VIEW IF EXISTS {q_view} CASCADE", conn=conn)
                self._execute_sql(
                    f"CREATE OR REPLACE VIEW {q_view} AS SELECT * FROM {q_back}", conn=conn
                )

        except Exception as e:
            raise ModelExecutionError(node.name, q_view, str(e)) from e

    def _frame_name(self) -> str:
        return "pandas"

    def _create_or_replace_view(self, target_sql: str, select_body: str, node: Node) -> None:
        try:
            self._execute_sql(f"DROP VIEW IF EXISTS {target_sql} CASCADE")
            self._execute_sql(f"CREATE OR REPLACE VIEW {target_sql} AS {select_body}")
        except Exception as e:
            preview = f"-- target={target_sql}\n{select_body}"
            raise ModelExecutionError(node.name, target_sql, str(e), sql_snippet=preview) from e

    def _create_or_replace_table(self, target_sql: str, select_body: str, node: Node) -> None:
        """
        Postgres does NOT support 'CREATE OR REPLACE TABLE'.
        Use DROP TABLE IF EXISTS + CREATE TABLE AS, and accept CTE bodies.
        """
        try:
            self._execute_sql(f"DROP TABLE IF EXISTS {target_sql} CASCADE")
            self._execute_sql(f"CREATE TABLE {target_sql} AS {select_body}")
            self._analyze_relations([target_sql])
        except Exception as e:
            preview = f"-- target={target_sql}\n{select_body}"
            raise ModelExecutionError(node.name, target_sql, str(e), sql_snippet=preview) from e

    # ---------- meta ----------
    def on_node_built(self, node: Node, relation: str, fingerprint: str) -> None:
        """
        Write/update _ff_meta in the current schema after a successful build.
        """
        ensure_meta_table(self)
        upsert_meta(self, node.name, relation, fingerprint, "postgres")

    # ── Incremental API ────────────────────────────────────────────────────
    def exists_relation(self, relation: str) -> bool:
        """
        Return True if a table OR view exists for 'relation' in current schema.
        """
        sql = """
            select 1
            from information_schema.tables
            where table_schema = current_schema()
              and lower(table_name) = lower(:t)
            union all
            select 1
            from information_schema.views
            where table_schema = current_schema()
              and lower(table_name) = lower(:t)
            limit 1
            """

        return bool(self._execute_sql(sql, {"t": relation}).fetchone())

    def create_table_as(self, relation: str, select_sql: str) -> None:
        body = self._extract_select_like(select_sql)
        qrel = self._qualified(relation)
        self._execute_sql(f"create table {qrel} as {body}")
        self._analyze_relations([relation])

    def full_refresh_table(self, relation: str, select_sql: str) -> None:
        """
        Full refresh for incremental fallbacks:
        DROP TABLE IF EXISTS + CREATE TABLE AS.
        """
        body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
        qrel = self._qualified(relation)
        self._execute_sql(f"drop table if exists {qrel}")
        self._execute_sql(f"create table {qrel} as {body}")
        self._analyze_relations([relation])

    def incremental_insert(self, relation: str, select_sql: str) -> None:
        body = self._extract_select_like(select_sql)
        qrel = self._qualified(relation)
        self._execute_sql(f"insert into {qrel} {body}")
        self._analyze_relations([relation])

    def incremental_merge(self, relation: str, select_sql: str, unique_key: list[str]) -> None:
        """
        Portable fallback: staging + delete + insert.
        """
        body = self._extract_select_like(select_sql)
        qrel = self._qualified(relation)
        pred = " AND ".join([f"t.{k}=s.{k}" for k in unique_key])
        self._execute_sql(f"create temporary table ff_stg as {body}")
        try:
            self._execute_sql(f"delete from {qrel} t using ff_stg s where {pred}")
            self._execute_sql(f"insert into {qrel} select * from ff_stg")
            self._analyze_relations([relation])
        finally:
            self._execute_sql("drop table if exists ff_stg")

    def alter_table_sync_schema(
        self, relation: str, select_sql: str, *, mode: str = "append_new_columns"
    ) -> None:
        """
        Add new columns present in SELECT but missing on target (as text).
        """
        body = self._extract_select_like(select_sql)
        qrel = self._qualified(relation)

        with self.engine.begin() as conn:
            # Probe output columns
            cols = [r[0] for r in self._execute_sql(f"select * from ({body}) q limit 0")]

            # Existing columns in target table
            existing = {
                r[0]
                for r in self._execute_sql(
                    """
                    select column_name
                    from information_schema.columns
                    where table_schema = current_schema()
                    and lower(table_name)=lower(:t)
                    """,
                    {"t": relation},
                ).fetchall()
            }

            add = [c for c in cols if c not in existing]
            for c in add:
                self._execute_sql(f'alter table {qrel} add column "{c}" text', conn=conn)

    # ── Snapshot API ──────────────────────────────────────────────────────
    def _snapshot_target_identifier(self, rel_name: str) -> str:
        return self._qualified(rel_name)

    def _snapshot_current_timestamp(self) -> str:
        return "current_timestamp"

    def _snapshot_null_timestamp(self) -> str:
        return "cast(null as timestamp)"

    def _snapshot_null_hash(self) -> str:
        return "cast(null as text)"

    def _snapshot_hash_expr(self, check_cols: list[str], src_alias: str) -> str:
        concat_expr = self._snapshot_concat_expr(check_cols, src_alias)
        return f"md5({concat_expr})"

    def _snapshot_cast_as_string(self, expr: str) -> str:
        return f"cast({expr} as text)"

    def _snapshot_source_ref(
        self, rel_name: str, select_body: str
    ) -> tuple[str, Callable[[], None]]:
        src_name = f"__ff_snapshot_src_{rel_name}".replace(".", "_")
        src_q = self._q_ident(src_name)
        self._execute_sql(f"drop table if exists {src_q}")
        self._execute_sql(f"create temporary table {src_q} as {select_body}")

        def _cleanup() -> None:
            self._execute_sql(f"drop table if exists {src_q}")

        return src_q, _cleanup

    def execute_hook_sql(self, sql: str) -> None:
        """
        Execute one or multiple SQL statements for pre/post/on_run hooks.

        Accepts a string that may contain ';'-separated statements.
        """
        self._execute_sql(sql)

    # ---- Unit-test helpers -------------------------------------------------

    def utest_load_relation_from_rows(self, relation: str, rows: list[dict]) -> None:
        """
        Load rows into a Postgres table for unit tests (replace if exists),
        without using pandas.to_sql.
        """
        qualified = self._qualified(relation)

        if not rows:
            # Ensure an empty table exists (corner case).
            try:
                with self.engine.begin() as conn:
                    self._execute_sql_maintenance(
                        f"DROP TABLE IF EXISTS {qualified} CASCADE",
                        conn=conn,
                    )
                    self._execute_sql_maintenance(
                        f"CREATE TABLE {qualified} ()",
                        conn=conn,
                    )
            except SQLAlchemyError as e:
                raise ModelExecutionError(
                    node_name=f"utest::{relation}",
                    relation=self._qualified(relation),
                    message=str(e),
                ) from e
            return

        first = rows[0]
        if not isinstance(first, dict):
            raise ModelExecutionError(
                node_name=f"utest::{relation}",
                relation=self._qualified(relation),
                message=f"Expected list[dict] for rows, got {type(first).__name__}",
            )

        cols = list(first.keys())
        col_list_sql = ", ".join(self._q_ident(c) for c in cols)
        select_exprs = ", ".join(f":{c} AS {self._q_ident(c)}" for c in cols)
        insert_values_sql = ", ".join(f":{c}" for c in cols)

        try:
            with self.engine.begin() as conn:
                # Replace any existing table
                self._execute_sql_maintenance(
                    f"DROP TABLE IF EXISTS {qualified} CASCADE",
                    conn=conn,
                )

                # Create table from first row
                create_sql = f"CREATE TABLE {qualified} AS SELECT {select_exprs}"
                self._execute_sql_maintenance(create_sql, first, conn=conn)

                # Insert remaining rows
                if len(rows) > 1:
                    insert_sql = (
                        f"INSERT INTO {qualified} ({col_list_sql}) VALUES ({insert_values_sql})"
                    )
                    for row in rows[1:]:
                        self._execute_sql_maintenance(insert_sql, row, conn=conn)

        except SQLAlchemyError as e:
            raise ModelExecutionError(
                node_name=f"utest::{relation}",
                relation=self._qualified(relation),
                message=str(e),
            ) from e

    def utest_read_relation(self, relation: str) -> pd.DataFrame:
        """
        Read a relation as a DataFrame for unit-test assertions.
        """
        qualified = self._qualified(relation)
        with self.engine.begin() as conn:
            self._set_search_path(conn)
            return pd.read_sql_query(text(f"select * from {qualified}"), conn)

    def utest_clean_target(self, relation: str) -> None:
        """
        For unit tests: drop any view or table with this name in the configured schema.

        We avoid WrongObjectType by:
          - querying information_schema for existing table/view with this name
          - dropping only the matching kinds.
        """
        with self.engine.begin() as conn:
            # Use the same search_path logic as the rest of the executor
            self._set_search_path(conn)

            # Decide which schema to inspect
            cur_schema = conn.execute(text("select current_schema()")).scalar()
            schema = self.schema or cur_schema

            # Find objects named <relation> in that schema
            info_sql = """
                select kind, table_schema, table_name from (
                  select 'table' as kind, table_schema, table_name
                  from information_schema.tables
                  where lower(table_schema) = lower(:schema)
                    and lower(table_name) = lower(:rel)
                  union all
                  select 'view' as kind, table_schema, table_name
                  from information_schema.views
                  where lower(table_schema) = lower(:schema)
                    and lower(table_name) = lower(:rel)
                ) s
                order by kind;
            """
            rows = conn.execute(
                text(info_sql),
                {"schema": schema, "rel": relation},
            ).fetchall()

            for kind, table_schema, table_name in rows:
                qualified = f'"{table_schema}"."{table_name}"'
                if kind == "view":
                    conn.execute(text(f"DROP VIEW IF EXISTS {qualified} CASCADE"))
                else:  # table
                    conn.execute(text(f"DROP TABLE IF EXISTS {qualified} CASCADE"))

on_node_built

on_node_built(node, relation, fingerprint)

Write/update _ff_meta in the current schema after a successful build.

Source code in src/fastflowtransform/executors/postgres.py
382
383
384
385
386
387
def on_node_built(self, node: Node, relation: str, fingerprint: str) -> None:
    """
    Write/update _ff_meta in the current schema after a successful build.
    """
    ensure_meta_table(self)
    upsert_meta(self, node.name, relation, fingerprint, "postgres")

exists_relation

exists_relation(relation)

Return True if a table OR view exists for 'relation' in current schema.

Source code in src/fastflowtransform/executors/postgres.py
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
def exists_relation(self, relation: str) -> bool:
    """
    Return True if a table OR view exists for 'relation' in current schema.
    """
    sql = """
        select 1
        from information_schema.tables
        where table_schema = current_schema()
          and lower(table_name) = lower(:t)
        union all
        select 1
        from information_schema.views
        where table_schema = current_schema()
          and lower(table_name) = lower(:t)
        limit 1
        """

    return bool(self._execute_sql(sql, {"t": relation}).fetchone())

full_refresh_table

full_refresh_table(relation, select_sql)

Full refresh for incremental fallbacks: DROP TABLE IF EXISTS + CREATE TABLE AS.

Source code in src/fastflowtransform/executors/postgres.py
415
416
417
418
419
420
421
422
423
424
def full_refresh_table(self, relation: str, select_sql: str) -> None:
    """
    Full refresh for incremental fallbacks:
    DROP TABLE IF EXISTS + CREATE TABLE AS.
    """
    body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
    qrel = self._qualified(relation)
    self._execute_sql(f"drop table if exists {qrel}")
    self._execute_sql(f"create table {qrel} as {body}")
    self._analyze_relations([relation])

incremental_merge

incremental_merge(relation, select_sql, unique_key)

Portable fallback: staging + delete + insert.

Source code in src/fastflowtransform/executors/postgres.py
432
433
434
435
436
437
438
439
440
441
442
443
444
445
def incremental_merge(self, relation: str, select_sql: str, unique_key: list[str]) -> None:
    """
    Portable fallback: staging + delete + insert.
    """
    body = self._extract_select_like(select_sql)
    qrel = self._qualified(relation)
    pred = " AND ".join([f"t.{k}=s.{k}" for k in unique_key])
    self._execute_sql(f"create temporary table ff_stg as {body}")
    try:
        self._execute_sql(f"delete from {qrel} t using ff_stg s where {pred}")
        self._execute_sql(f"insert into {qrel} select * from ff_stg")
        self._analyze_relations([relation])
    finally:
        self._execute_sql("drop table if exists ff_stg")

alter_table_sync_schema

alter_table_sync_schema(relation, select_sql, *, mode='append_new_columns')

Add new columns present in SELECT but missing on target (as text).

Source code in src/fastflowtransform/executors/postgres.py
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
def alter_table_sync_schema(
    self, relation: str, select_sql: str, *, mode: str = "append_new_columns"
) -> None:
    """
    Add new columns present in SELECT but missing on target (as text).
    """
    body = self._extract_select_like(select_sql)
    qrel = self._qualified(relation)

    with self.engine.begin() as conn:
        # Probe output columns
        cols = [r[0] for r in self._execute_sql(f"select * from ({body}) q limit 0")]

        # Existing columns in target table
        existing = {
            r[0]
            for r in self._execute_sql(
                """
                select column_name
                from information_schema.columns
                where table_schema = current_schema()
                and lower(table_name)=lower(:t)
                """,
                {"t": relation},
            ).fetchall()
        }

        add = [c for c in cols if c not in existing]
        for c in add:
            self._execute_sql(f'alter table {qrel} add column "{c}" text', conn=conn)

execute_hook_sql

execute_hook_sql(sql)

Execute one or multiple SQL statements for pre/post/on_run hooks.

Accepts a string that may contain ';'-separated statements.

Source code in src/fastflowtransform/executors/postgres.py
511
512
513
514
515
516
517
def execute_hook_sql(self, sql: str) -> None:
    """
    Execute one or multiple SQL statements for pre/post/on_run hooks.

    Accepts a string that may contain ';'-separated statements.
    """
    self._execute_sql(sql)

utest_load_relation_from_rows

utest_load_relation_from_rows(relation, rows)

Load rows into a Postgres table for unit tests (replace if exists), without using pandas.to_sql.

Source code in src/fastflowtransform/executors/postgres.py
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
def utest_load_relation_from_rows(self, relation: str, rows: list[dict]) -> None:
    """
    Load rows into a Postgres table for unit tests (replace if exists),
    without using pandas.to_sql.
    """
    qualified = self._qualified(relation)

    if not rows:
        # Ensure an empty table exists (corner case).
        try:
            with self.engine.begin() as conn:
                self._execute_sql_maintenance(
                    f"DROP TABLE IF EXISTS {qualified} CASCADE",
                    conn=conn,
                )
                self._execute_sql_maintenance(
                    f"CREATE TABLE {qualified} ()",
                    conn=conn,
                )
        except SQLAlchemyError as e:
            raise ModelExecutionError(
                node_name=f"utest::{relation}",
                relation=self._qualified(relation),
                message=str(e),
            ) from e
        return

    first = rows[0]
    if not isinstance(first, dict):
        raise ModelExecutionError(
            node_name=f"utest::{relation}",
            relation=self._qualified(relation),
            message=f"Expected list[dict] for rows, got {type(first).__name__}",
        )

    cols = list(first.keys())
    col_list_sql = ", ".join(self._q_ident(c) for c in cols)
    select_exprs = ", ".join(f":{c} AS {self._q_ident(c)}" for c in cols)
    insert_values_sql = ", ".join(f":{c}" for c in cols)

    try:
        with self.engine.begin() as conn:
            # Replace any existing table
            self._execute_sql_maintenance(
                f"DROP TABLE IF EXISTS {qualified} CASCADE",
                conn=conn,
            )

            # Create table from first row
            create_sql = f"CREATE TABLE {qualified} AS SELECT {select_exprs}"
            self._execute_sql_maintenance(create_sql, first, conn=conn)

            # Insert remaining rows
            if len(rows) > 1:
                insert_sql = (
                    f"INSERT INTO {qualified} ({col_list_sql}) VALUES ({insert_values_sql})"
                )
                for row in rows[1:]:
                    self._execute_sql_maintenance(insert_sql, row, conn=conn)

    except SQLAlchemyError as e:
        raise ModelExecutionError(
            node_name=f"utest::{relation}",
            relation=self._qualified(relation),
            message=str(e),
        ) from e

utest_read_relation

utest_read_relation(relation)

Read a relation as a DataFrame for unit-test assertions.

Source code in src/fastflowtransform/executors/postgres.py
588
589
590
591
592
593
594
595
def utest_read_relation(self, relation: str) -> pd.DataFrame:
    """
    Read a relation as a DataFrame for unit-test assertions.
    """
    qualified = self._qualified(relation)
    with self.engine.begin() as conn:
        self._set_search_path(conn)
        return pd.read_sql_query(text(f"select * from {qualified}"), conn)

utest_clean_target

utest_clean_target(relation)

For unit tests: drop any view or table with this name in the configured schema.

We avoid WrongObjectType by
  • querying information_schema for existing table/view with this name
  • dropping only the matching kinds.
Source code in src/fastflowtransform/executors/postgres.py
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
def utest_clean_target(self, relation: str) -> None:
    """
    For unit tests: drop any view or table with this name in the configured schema.

    We avoid WrongObjectType by:
      - querying information_schema for existing table/view with this name
      - dropping only the matching kinds.
    """
    with self.engine.begin() as conn:
        # Use the same search_path logic as the rest of the executor
        self._set_search_path(conn)

        # Decide which schema to inspect
        cur_schema = conn.execute(text("select current_schema()")).scalar()
        schema = self.schema or cur_schema

        # Find objects named <relation> in that schema
        info_sql = """
            select kind, table_schema, table_name from (
              select 'table' as kind, table_schema, table_name
              from information_schema.tables
              where lower(table_schema) = lower(:schema)
                and lower(table_name) = lower(:rel)
              union all
              select 'view' as kind, table_schema, table_name
              from information_schema.views
              where lower(table_schema) = lower(:schema)
                and lower(table_name) = lower(:rel)
            ) s
            order by kind;
        """
        rows = conn.execute(
            text(info_sql),
            {"schema": schema, "rel": relation},
        ).fetchall()

        for kind, table_schema, table_name in rows:
            qualified = f'"{table_schema}"."{table_name}"'
            if kind == "view":
                conn.execute(text(f"DROP VIEW IF EXISTS {qualified} CASCADE"))
            else:  # table
                conn.execute(text(f"DROP TABLE IF EXISTS {qualified} CASCADE"))

run_sql

run_sql(node, env)
Orchestrate SQL models

1) Render Jinja (ref/source/this) and strip leading {{ config(...) }}. 2) If the SQL is full DDL (CREATE …), execute it verbatim (passthrough). 3) Otherwise, normalize to CREATE OR REPLACE {TABLE|VIEW} AS . The body is CTE-aware (keeps WITH … SELECT … intact).

On failure, raise ModelExecutionError with a helpful snippet.

Source code in src/fastflowtransform/executors/base.py
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
def run_sql(self, node: Node, env: Environment) -> None:
    """
    Orchestrate SQL models:
      1) Render Jinja (ref/source/this) and strip leading {{ config(...) }}.
      2) If the SQL is full DDL (CREATE …), execute it verbatim (passthrough).
      3) Otherwise, normalize to CREATE OR REPLACE {TABLE|VIEW} AS <body>.
         The body is CTE-aware (keeps WITH … SELECT … intact).
    On failure, raise ModelExecutionError with a helpful snippet.
    """
    meta = getattr(node, "meta", {}) or {}
    if self._meta_is_incremental(meta):
        # Delegates to incremental engine: render, schema sync, merge/insert, etc.
        return _ff_incremental.run_or_dispatch(self, node, env)

    if self._meta_is_snapshot(meta):
        # Snapshots are executed via the dedicated CLI: `fft snapshot run`.
        raise ModelExecutionError(
            node_name=node.name,
            relation=relation_for(node.name),
            message=(
                "Snapshot models cannot be executed via 'fft run'. "
                "Use 'fft snapshot run' instead."
            ),
            sql_snippet="",
        )

    sql_rendered = self.render_sql(
        node,
        env,
        ref_resolver=lambda name: self._resolve_ref(name, env),
        source_resolver=self._resolve_source,
    )
    sql = self._strip_leading_config(sql_rendered).strip()

    materialization = (node.meta or {}).get("materialized", "table")
    if materialization == "ephemeral":
        return

    # 1) Direct DDL passthrough (CREATE [OR REPLACE] {TABLE|VIEW} …)
    if self._looks_like_direct_ddl(sql):
        try:
            self._execute_sql_direct(sql, node)
            return
        except NotImplementedError:
            # Engine doesn't implement direct DDL → fall back to normalized materialization.
            pass
        except Exception as e:
            raise ModelExecutionError(
                node_name=node.name,
                relation=relation_for(node.name),
                message=str(e),
                sql_snippet=sql,
            ) from e

    # 2) Normalized materialization path (CTE-safe body)
    body = self._selectable_body(sql).rstrip(" ;\n\t")
    target_sql = self._format_relation_for_ref(node.name)

    # Centralized SQL preview logging (applies to ALL engines)
    preview = (
        f"=== MATERIALIZE ===\n"
        f"-- model: {node.name}\n"
        f"-- materialized: {materialization}\n"
        f"-- target: {target_sql}\n"
        f"{body}\n"
    )
    echo_debug(preview)

    try:
        self._apply_sql_materialization(node, target_sql, body, materialization)
    except Exception as e:
        preview = f"-- materialized={materialization}\n-- target={target_sql}\n{body}"
        raise ModelExecutionError(
            node_name=node.name,
            relation=relation_for(node.name),
            message=str(e),
            sql_snippet=preview,
        ) from e

configure_query_budget_limit

configure_query_budget_limit(limit)

Inject a configured per-query byte limit (e.g. from budgets.yml).

Source code in src/fastflowtransform/executors/base.py
501
502
503
504
505
506
507
508
509
510
511
512
513
def configure_query_budget_limit(self, limit: int | None) -> None:
    """
    Inject a configured per-query byte limit (e.g. from budgets.yml).
    """
    if limit is None:
        self._ff_configured_query_limit = None
        return
    try:
        iv = int(limit)
    except Exception:
        self._ff_configured_query_limit = None
        return
    self._ff_configured_query_limit = iv if iv > 0 else None

reset_node_stats

reset_node_stats()

Reset per-node statistics buffer.

The run engine calls this before executing a model so that all stats recorded via _record_query_stats(...) belong to that node.

Source code in src/fastflowtransform/executors/base.py
553
554
555
556
557
558
559
560
561
def reset_node_stats(self) -> None:
    """
    Reset per-node statistics buffer.

    The run engine calls this before executing a model so that all
    stats recorded via `_record_query_stats(...)` belong to that node.
    """
    # just clear the buffer; next recording will re-create it
    self._ff_query_stats_buffer = []

get_node_stats

get_node_stats()

Aggregate buffered QueryStats into a simple dict:

{
  "bytes_scanned": <sum>,
  "rows": <sum>,
  "query_duration_ms": <sum>,
}

Called by the run engine after a node finishes.

Source code in src/fastflowtransform/executors/base.py
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
def get_node_stats(self) -> dict[str, int]:
    """
    Aggregate buffered QueryStats into a simple dict:

        {
          "bytes_scanned": <sum>,
          "rows": <sum>,
          "query_duration_ms": <sum>,
        }

    Called by the run engine after a node finishes.
    """
    stats_list = self._drain_query_stats()
    if not stats_list:
        return {}

    total_bytes = 0
    total_rows = 0
    total_duration = 0

    for s in stats_list:
        if s.bytes_processed is not None:
            total_bytes += int(s.bytes_processed)
        if s.rows is not None:
            total_rows += int(s.rows)
        if s.duration_ms is not None:
            total_duration += int(s.duration_ms)

    return {
        "bytes_scanned": total_bytes,
        "rows": total_rows,
        "query_duration_ms": total_duration,
    }

run_python

run_python(node)

Execute the Python model for a given node and materialize its result.

Source code in src/fastflowtransform/executors/base.py
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
def run_python(self, node: Node) -> None:
    """Execute the Python model for a given node and materialize its result."""
    func = REGISTRY.py_funcs[node.name]
    deps = REGISTRY.nodes[node.name].deps or []

    self._reset_http_ctx(node)

    # arg = self._build_python_args(node, deps)
    args, argmap = self._build_python_inputs(node, deps)
    requires = REGISTRY.py_requires.get(node.name, {})
    # if deps:
    #     self._validate_required(node.name, arg, requires)
    if deps:
        # Required-columns check works against the mapping
        self._validate_required(node.name, argmap, requires)

    # out = self._execute_python_func(func, arg, node)
    out = self._execute_python_func(func, args, node)

    target = relation_for(node.name)
    meta = getattr(node, "meta", {}) or {}
    mat = self._resolve_materialization_strategy(meta)

    if mat == "incremental":
        self._materialize_incremental(target, out, node, meta)
    elif mat == "view":
        self._materialize_view(target, out, node)
    else:
        self._materialize_relation(target, out, node)

    self._snapshot_http_ctx(node)

snapshot_prune

snapshot_prune(relation, unique_key, keep_last, *, dry_run=False)

Delete older snapshot versions while keeping the most recent keep_last rows per business key (including the current row).

Source code in src/fastflowtransform/executors/_snapshot_sql_mixin.py
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    def snapshot_prune(
        self,
        relation: str,
        unique_key: list[str],
        keep_last: int,
        *,
        dry_run: bool = False,
    ) -> None:
        """
        Delete older snapshot versions while keeping the most recent `keep_last`
        rows per business key (including the current row).
        """
        ex = cast("BaseExecutor[Any]", self)

        if keep_last <= 0:
            return

        keys = [k for k in unique_key if k]
        if not keys:
            return

        target = self._snapshot_target_identifier(relation)
        vf = self.SNAPSHOT_VALID_FROM_COL  # type: ignore[attr-defined]

        key_select = ", ".join(keys)
        part_by = ", ".join(keys)

        ranked_sql = f"""
SELECT
  {key_select},
  {vf},
  ROW_NUMBER() OVER (
    PARTITION BY {part_by}
    ORDER BY {vf} DESC
  ) AS rn
FROM {target}
"""

        if dry_run:
            sql = f"""
WITH ranked AS (
  {ranked_sql}
)
SELECT COUNT(*) AS rows_to_delete
FROM ranked
WHERE rn > {int(keep_last)}
"""
            res = ex._execute_sql(sql)
            count = self._snapshot_fetch_count(res)
            echo(
                f"[DRY-RUN] snapshot_prune({relation}): would delete {count} row(s) "
                f"(keep_last={keep_last})"
            )
            return

        join_pred = " AND ".join([f"t.{k} = r.{k}" for k in keys])
        delete_sql = f"""
DELETE FROM {target} t
USING (
  {ranked_sql}
) r
WHERE
  r.rn > {int(keep_last)}
  AND {join_pred}
  AND t.{vf} = r.{vf}
"""
        ex._execute_sql(delete_sql)