Skip to content

fastflowtransform.executors.duckdb

DuckExecutor

Bases: SqlIdentifierMixin, BaseExecutor[DataFrame]

Source code in src/fastflowtransform/executors/duckdb.py
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
class DuckExecutor(SqlIdentifierMixin, BaseExecutor[pd.DataFrame]):
    ENGINE_NAME: str = "duckdb"
    runtime_contracts: DuckRuntimeContracts
    runtime_query_stats: DuckQueryStatsRuntime
    runtime_budget: DuckBudgetRuntime
    snapshot_runtime: DuckSnapshotRuntime

    def __init__(
        self, db_path: str = ":memory:", schema: str | None = None, catalog: str | None = None
    ):
        if db_path and db_path != ":memory:" and "://" not in db_path:
            with suppress(Exception):
                Path(db_path).parent.mkdir(parents=True, exist_ok=True)
        self.db_path = db_path
        self.con = duckdb.connect(db_path)
        self.schema = schema.strip() if isinstance(schema, str) and schema.strip() else None
        catalog_override = catalog.strip() if isinstance(catalog, str) and catalog.strip() else None

        # If a catalog override is provided, connect in-memory and attach the file once
        # under the requested alias to avoid DuckDB's auto-attached filename catalog.
        self.catalog: str | None = None
        if catalog_override and db_path != ":memory:" and "://" not in db_path:
            connected = self._connect_with_catalog_override(catalog_override)
            if connected:
                self.catalog = catalog_override
            else:
                self.catalog = self._detect_catalog()
        else:
            self.catalog = self._detect_catalog()

        self.runtime_query_stats = DuckQueryStatsRuntime(self)
        self.runtime_budget = DuckBudgetRuntime(self)
        self.runtime_contracts = DuckRuntimeContracts(self)
        self.snapshot_runtime = DuckSnapshotRuntime(self)

        if self.schema:
            safe_schema = _q_ident(self.schema)
            self._execute_basic(f"create schema if not exists {safe_schema}")
            self._execute_basic(f"set schema '{self.schema}'")

    def _execute_basic(self, sql: str, params: Any | None = None) -> duckdb.DuckDBPyConnection:
        """
        Minimal helper to execute a statement and return the DuckDB cursor.
        Centralises raw connection use for test + runtime helpers.
        """
        return self.con.execute(sql, params) if params is not None else self.con.execute(sql)

    def _execute_fetchall(self, sql: str, params: Any | None = None) -> list[Any]:
        """
        Helper for runtimes that need full result sets without exposing cursors.
        """
        res = self._execute_basic(sql, params)
        fetchall = getattr(res, "fetchall", None)
        return list(cast(Iterable[Any], fetchall())) if callable(fetchall) else []

    def execute_test_sql(self, stmt: Any) -> Any:
        """
        Execute lightweight SQL for DQ tests using the underlying DuckDB connection.
        """

        def _run_one(s: Any) -> Any:
            statement_len = 2
            if (
                isinstance(s, tuple)
                and len(s) == statement_len
                and isinstance(s[0], str)
                and isinstance(s[1], dict)
            ):
                return self._execute_basic(s[0], s[1])
            if isinstance(s, str):
                return self._execute_basic(s)
            if isinstance(s, Iterable) and not isinstance(s, (bytes, bytearray, str)):
                res = None
                for item in s:
                    res = _run_one(item)
                return res
            return self._execute_basic(str(s))

        return make_fetchable(_run_one(stmt))

    def compute_freshness_delay_minutes(self, table: str, ts_col: str) -> tuple[float | None, str]:
        now_expr = "cast(now() as timestamp)"
        sql = (
            f"select date_part('epoch', {now_expr} - max({ts_col})) "
            f"/ 60.0 as delay_min from {table}"
        )
        delay = _scalar(self, sql)
        return (float(delay) if delay is not None else None, sql)

    def _execute_sql(self, sql: str, *args: Any, **kwargs: Any) -> duckdb.DuckDBPyConnection:
        """
        Central DuckDB SQL runner.

        All model-driven SQL in this executor should go through here.
        The cost guard may call _estimate_query_bytes(sql) before executing.
        This wrapper also records simple per-query stats for run_results.json.
        """

        def _exec() -> duckdb.DuckDBPyConnection:
            return self.con.execute(sql, *args, **kwargs)

        def _rows(result: Any) -> int | None:
            return self.runtime_query_stats.rowcount_from_result(result)

        return self.runtime_budget.run_sql(
            sql,
            exec_fn=_exec,
            stats_runtime=self.runtime_query_stats,
            rowcount_extractor=_rows,
        )

    def _connect_with_catalog_override(self, alias: str) -> bool:
        """
        Recreate the connection in-memory and attach the target DB under the
        requested catalog alias, so DuckDB does not auto-name it after the file.
        """
        try:
            resolved = str(Path(self.db_path).resolve())
            # New in-memory connection, then attach the file once under the alias.
            self.con = duckdb.connect()
            self._execute_basic(
                f"attach database '{resolved}' as {_q_ident(alias)} (READ_ONLY FALSE)"
            )
            self._execute_basic(f"set catalog '{alias}'")
            return True
        except Exception:
            # Leave the existing connection in place; caller will fall back.
            with suppress(Exception):
                self.con.close()
            self.con = duckdb.connect(self.db_path)
            return False

    def _detect_catalog(self) -> str | None:
        rows = self._execute_basic("PRAGMA database_list").fetchall()
        if rows:
            return str(rows[0][1])
        return None

    def _apply_catalog_override(self, name: str) -> bool:
        alias = name.strip()
        if not alias:
            return False
        try:
            if self.db_path != ":memory:":
                resolved = str(Path(self.db_path).resolve())
                with suppress(Exception):
                    self._execute_basic(f"detach database {_q_ident(alias)}")
                self._execute_basic(
                    f"attach database '{resolved}' as {_q_ident(alias)} (READ_ONLY FALSE)"
                )
            self._execute_basic(f"set catalog '{alias}'")
            return True
        except Exception:
            return False

    def clone(self) -> DuckExecutor:
        """
        Generates a new Executor instance with its own connection for Thread-Worker.
        Copies runtime-contract configuration from the parent.
        """
        cloned = DuckExecutor(self.db_path, schema=self.schema, catalog=self.catalog)

        # Propagate contracts + project contracts to the clone
        contracts = getattr(self, "_ff_contracts", None)
        project_contracts = getattr(self, "_ff_project_contracts", None)
        if contracts is not None or project_contracts is not None:
            # configure_contracts lives on BaseExecutor
            cloned.configure_contracts(contracts or {}, project_contracts)

        return cloned

    def _exec_many(self, sql: str) -> None:
        """
        Execute multiple SQL statements separated by ';' on the same connection.
        DuckDB normally accepts one statement per execute(), so we split here.
        """
        for stmt in (part.strip() for part in sql.split(";")):
            if not stmt:
                continue
            self._execute_sql(stmt)

    # ---- Frame hooks ----
    def _quote_identifier(self, ident: str) -> str:
        return _q_ident(ident)

    def _should_include_catalog(
        self, catalog: str | None, schema: str | None, *, explicit: bool
    ) -> bool:
        """
        DuckDB includes catalog only when explicitly provided or when it matches
        the schema (mirrors previous behaviour).
        """
        if explicit:
            return bool(catalog)
        return bool(catalog and schema and catalog.lower() == schema.lower())

    def _default_catalog_for_source(self, schema: str | None) -> str | None:
        """
        For sources, fall back to DuckDB's detected catalog when:
        - schema is set and matches the catalog, or
        - neither schema nor catalog was provided (keep old fallback)
        """
        cat = self._default_catalog()
        if not cat:
            return None
        if schema is None or cat.lower() == schema.lower():
            return cat
        return None

    def _qualified(self, relation: str, *, quoted: bool = True) -> str:
        """
        Return (catalog.)schema.relation if schema is set; otherwise just relation.
        When quoted=False, emit bare identifiers for APIs like con.table().
        """
        return self._format_identifier(relation, purpose="physical", quote=quoted)

    def _read_relation(self, relation: str, node: Node, deps: Iterable[str]) -> pd.DataFrame:
        try:
            target = self._qualified(relation, quoted=False)
            return self.con.table(target).df()
        except CatalogException as e:
            existing = [
                r[0]
                for r in self._execute_basic(
                    "select table_name from information_schema.tables "
                    "where table_schema in ('main','temp')"
                ).fetchall()
            ]
            raise RuntimeError(
                f"Dependency table not found: '{relation}'\n"
                f"Deps: {list(deps)}\nExisting tables: {existing}\n"
                "Note: Use same File-DB/Connection for Seeding & Run."
            ) from e

    def _materialize_relation(self, relation: str, df: pd.DataFrame, node: Node) -> None:
        tmp = "_ff_py_out"
        try:
            self.con.register(tmp, df)
            target = self._qualified(relation)
            self._execute_sql(f'create or replace table {target} as select * from "{tmp}"')
        finally:
            try:
                self.con.unregister(tmp)
            except Exception:
                # housekeeping only; stats here are not important but harmless if recorded
                self._execute_basic(f'drop view if exists "{tmp}"')

    def _create_or_replace_view_from_table(
        self, view_name: str, backing_table: str, node: Node
    ) -> None:
        view_target = self._qualified(view_name)
        backing = self._qualified(backing_table)
        self._execute_sql(f"create or replace view {view_target} as select * from {backing}")

    def _frame_name(self) -> str:
        return "pandas"

    # ---- SQL hooks ----
    def _create_or_replace_view(self, target_sql: str, select_body: str, node: Node) -> None:
        self._execute_sql(f"create or replace view {target_sql} as {select_body}")

    def _create_or_replace_table(self, target_sql: str, select_body: str, node: Node) -> None:
        self._execute_sql(f"create or replace table {target_sql} as {select_body}")

    # ---- Meta hook ----
    def on_node_built(self, node: Node, relation: str, fingerprint: str) -> None:
        """
        After successful materialization, ensure the meta table exists and upsert the row.
        """
        ensure_meta_table(self)
        upsert_meta(self, node.name, relation, fingerprint, "duckdb")

    # ── Incremental API ────────────────────────────────────────────────────
    def exists_relation(self, relation: str) -> bool:
        where_tables: list[str] = ["lower(table_name) = lower(?)"]
        params: list[str] = [relation]
        if self.catalog:
            where_tables.append("lower(table_catalog) = lower(?)")
            params.append(self.catalog)
        if self.schema:
            where_tables.append("lower(table_schema) = lower(?)")
            params.append(self.schema)
        else:
            where_tables.append("table_schema in ('main','temp')")
        where = " AND ".join(where_tables)
        sql_tables = f"select 1 from information_schema.tables where {where} limit 1"
        if self._execute_basic(sql_tables, params).fetchone():
            return True
        sql_views = f"select 1 from information_schema.views where {where} limit 1"
        return bool(self._execute_basic(sql_views, params).fetchone())

    def create_table_as(self, relation: str, select_sql: str) -> None:
        # Use only the SELECT body and strip trailing semicolons for safety.
        body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
        self._execute_sql(f"create table {self._qualified(relation)} as {body}")

    def incremental_insert(self, relation: str, select_sql: str) -> None:
        # Ensure the inner SELECT is clean (no trailing semicolon; SELECT body only).
        body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
        self._execute_sql(f"insert into {self._qualified(relation)} {body}")

    def incremental_merge(self, relation: str, select_sql: str, unique_key: list[str]) -> None:
        """
        Fallback strategy for DuckDB:
        - DELETE collisions via DELETE ... USING (<select>) s
        - INSERT all rows via INSERT ... SELECT * FROM (<select>)
        """
        # 1) clean inner SELECT
        body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")

        # 2) predicate for DELETE
        keys_pred = " AND ".join([f"t.{k}=s.{k}" for k in unique_key]) or "FALSE"

        # 3) first: delete collisions
        delete_sql = f"delete from {self._qualified(relation)} t using ({body}) s where {keys_pred}"
        self._execute_sql(delete_sql)

        # 4) then: insert fresh rows
        insert_sql = f"insert into {self._qualified(relation)} select * from ({body}) src"
        self._execute_sql(insert_sql)

    def alter_table_sync_schema(
        self, relation: str, select_sql: str, *, mode: str = "append_new_columns"
    ) -> None:
        """
        Best-effort: add new columns with inferred type.
        """
        # Probe: empty projection from the SELECT (cleaned to avoid parser issues).
        body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
        probe = self._execute_basic(f"select * from ({body}) as q limit 0")
        cols = [c[0] for c in probe.description or []]
        existing = {
            r[0]
            for r in self._execute_basic(
                "select column_name from information_schema.columns "
                + "where lower(table_name)=lower(?)"
                + (" and lower(table_schema)=lower(?)" if self.schema else ""),
                ([relation, self.schema] if self.schema else [relation]),
            ).fetchall()
        }
        add = [c for c in cols if c not in existing]
        for c in add:
            col = _q_ident(c)
            target = self._qualified(relation)
            try:
                self._execute_basic(f"alter table {target} add column {col} varchar")
            except Exception:
                self._execute_basic(f"alter table {target} add column {col} varchar")

    def execute_hook_sql(self, sql: str) -> None:
        """
        Execute one or multiple SQL statements for pre/post/on_run hooks.

        Accepts a string that may contain ';'-separated statements.
        """
        self._exec_many(sql)

    # ---- Snapshot runtime delegation ----
    def run_snapshot_sql(self, node: Node, env: Environment) -> None:
        """
        Delegate snapshot materialization to the DuckDB snapshot runtime.
        """
        self.snapshot_runtime.run_snapshot_sql(node, env)

    def snapshot_prune(
        self,
        relation: str,
        unique_key: list[str],
        keep_last: int,
        *,
        dry_run: bool = False,
    ) -> None:
        self.snapshot_runtime.snapshot_prune(
            relation,
            unique_key,
            keep_last,
            dry_run=dry_run,
        )

        # ---- Unit-test helpers -------------------------------------------------

    def utest_load_relation_from_rows(self, relation: str, rows: list[dict]) -> None:
        """
        Load rows into a DuckDB table for unit tests, fully qualified to
        this executor's schema/catalog.
        """
        df = pd.DataFrame(rows)
        tmp = f"_ff_utest_tmp_{uuid.uuid4().hex[:12]}"
        self.con.register(tmp, df)
        try:
            target = self._qualified(relation)
            self._execute_basic(f"create or replace table {target} as select * from {tmp}")
        finally:
            with suppress(Exception):
                self.con.unregister(tmp)
            # Fallback for older DuckDB where unregister might not exist
            with suppress(Exception):
                self._execute_basic(f'drop view if exists "{tmp}"')

    def utest_read_relation(self, relation: str) -> pd.DataFrame:
        """
        Read a relation as a DataFrame for unit-test assertions.
        """
        target = self._qualified(relation, quoted=False)
        return self.con.table(target).df()

    def utest_clean_target(self, relation: str) -> None:
        """
        Drop any table/view with the given name in this schema/catalog.
        Safe because utest uses its own DB/path.
        """
        target = self._qualified(relation)
        # best-effort; ignore failures
        with suppress(Exception):
            self._execute_basic(f"drop view if exists {target}")
        with suppress(Exception):
            self._execute_basic(f"drop table if exists {target}")

    def collect_docs_columns(self) -> dict[str, list[ColumnInfo]]:
        """
        Best-effort column metadata for docs (schema-aware, supports catalog).
        """
        where: list[str] = []
        params: list[str] = []

        if self.catalog:
            where.append("lower(table_catalog) = lower(?)")
            params.append(self.catalog)
        if self.schema:
            where.append("lower(table_schema) = lower(?)")
            params.append(self.schema)
        else:
            where.append("table_schema in ('main','temp')")

        where_sql = " AND ".join(where) if where else "1=1"
        sql = f"""
        select table_name, column_name, data_type, is_nullable
        from information_schema.columns
        where {where_sql}
        order by table_schema, table_name, ordinal_position
        """

        try:
            rows = self._execute_basic(sql, params or None).fetchall()
        except Exception:
            return {}

        out: dict[str, list[ColumnInfo]] = {}
        for table, col, dtype, nullable in rows:
            out.setdefault(table, []).append(
                ColumnInfo(col, str(dtype), str(nullable) in (True, "YES", "Yes"))
            )
        return out

    def _introspect_columns_metadata(
        self,
        table: str,
        column: str | None = None,
    ) -> list[tuple[str, str]]:
        """
        Internal helper: return [(column_name, data_type), ...] for a DuckDB table.

        - Uses _normalize_table_identifier / _normalize_column_identifier
        - Works with or without schema qualification
        - Optionally restricts to a single column
        """
        schema, table_name = self._normalize_table_identifier(table)

        table_lower = table_name.lower()
        params: list[str] = [table_lower]

        where_clauses: list[str] = ["lower(table_name) = lower(?)"]

        if schema:
            where_clauses.append("lower(table_schema) = lower(?)")
            params.append(schema.lower())

        if column is not None:
            column_lower = self._normalize_column_identifier(column).lower()
            where_clauses.append("lower(column_name) = lower(?)")
            params.append(column_lower)

        where_sql = " AND ".join(where_clauses)

        sql = (
            "select column_name, data_type "
            "from information_schema.columns "
            f"where {where_sql} "
            "order by table_schema, ordinal_position"
        )

        rows = self._execute_basic(sql, params).fetchall()

        # Normalize to plain strings
        return [(str(name), str(dtype)) for (name, dtype) in rows]

    def introspect_column_physical_type(self, table: str, column: str) -> str | None:
        """
        DuckDB: read `data_type` from information_schema.columns for a single column.
        """
        rows = self._introspect_columns_metadata(table, column=column)
        # rows: [(column_name, data_type), ...]
        return rows[0][1] if rows else None

    def introspect_table_physical_schema(self, table: str) -> dict[str, str]:
        """
        DuckDB: return {column_name: data_type} for all columns of `table`.
        """
        rows = self._introspect_columns_metadata(table, column=None)
        return {name: dtype for (name, dtype) in rows}

    def load_seed(
        self, table: str, df: pd.DataFrame, schema: str | None = None
    ) -> tuple[bool, str, bool]:
        target_schema = schema or self.schema
        created_schema = False

        # Qualify identifier with optional schema/catalog
        qualified = self._qualify_identifier(table, schema=target_schema, catalog=self.catalog)

        if target_schema and "." not in table:
            safe_schema = _q_ident(target_schema)
            self._execute_sql(f"create schema if not exists {safe_schema}")
            created_schema = True

        tmp = f"_ff_seed_{uuid.uuid4().hex[:8]}"
        self.con.register(tmp, df)
        try:
            self._execute_sql(f'create or replace table {qualified} as select * from "{tmp}"')
        finally:
            with suppress(Exception):
                self.con.unregister(tmp)
            with suppress(Exception):
                self._execute_basic(f'drop view if exists "{tmp}"')

        return True, qualified, created_schema

execute_test_sql

execute_test_sql(stmt)

Execute lightweight SQL for DQ tests using the underlying DuckDB connection.

Source code in src/fastflowtransform/executors/duckdb.py
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
def execute_test_sql(self, stmt: Any) -> Any:
    """
    Execute lightweight SQL for DQ tests using the underlying DuckDB connection.
    """

    def _run_one(s: Any) -> Any:
        statement_len = 2
        if (
            isinstance(s, tuple)
            and len(s) == statement_len
            and isinstance(s[0], str)
            and isinstance(s[1], dict)
        ):
            return self._execute_basic(s[0], s[1])
        if isinstance(s, str):
            return self._execute_basic(s)
        if isinstance(s, Iterable) and not isinstance(s, (bytes, bytearray, str)):
            res = None
            for item in s:
                res = _run_one(item)
            return res
        return self._execute_basic(str(s))

    return make_fetchable(_run_one(stmt))

clone

clone()

Generates a new Executor instance with its own connection for Thread-Worker. Copies runtime-contract configuration from the parent.

Source code in src/fastflowtransform/executors/duckdb.py
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
def clone(self) -> DuckExecutor:
    """
    Generates a new Executor instance with its own connection for Thread-Worker.
    Copies runtime-contract configuration from the parent.
    """
    cloned = DuckExecutor(self.db_path, schema=self.schema, catalog=self.catalog)

    # Propagate contracts + project contracts to the clone
    contracts = getattr(self, "_ff_contracts", None)
    project_contracts = getattr(self, "_ff_project_contracts", None)
    if contracts is not None or project_contracts is not None:
        # configure_contracts lives on BaseExecutor
        cloned.configure_contracts(contracts or {}, project_contracts)

    return cloned

on_node_built

on_node_built(node, relation, fingerprint)

After successful materialization, ensure the meta table exists and upsert the row.

Source code in src/fastflowtransform/executors/duckdb.py
292
293
294
295
296
297
def on_node_built(self, node: Node, relation: str, fingerprint: str) -> None:
    """
    After successful materialization, ensure the meta table exists and upsert the row.
    """
    ensure_meta_table(self)
    upsert_meta(self, node.name, relation, fingerprint, "duckdb")

incremental_merge

incremental_merge(relation, select_sql, unique_key)

Fallback strategy for DuckDB: - DELETE collisions via DELETE ... USING ()

Source code in src/fastflowtransform/executors/duckdb.py
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
def incremental_merge(self, relation: str, select_sql: str, unique_key: list[str]) -> None:
    """
    Fallback strategy for DuckDB:
    - DELETE collisions via DELETE ... USING (<select>) s
    - INSERT all rows via INSERT ... SELECT * FROM (<select>)
    """
    # 1) clean inner SELECT
    body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")

    # 2) predicate for DELETE
    keys_pred = " AND ".join([f"t.{k}=s.{k}" for k in unique_key]) or "FALSE"

    # 3) first: delete collisions
    delete_sql = f"delete from {self._qualified(relation)} t using ({body}) s where {keys_pred}"
    self._execute_sql(delete_sql)

    # 4) then: insert fresh rows
    insert_sql = f"insert into {self._qualified(relation)} select * from ({body}) src"
    self._execute_sql(insert_sql)

alter_table_sync_schema

alter_table_sync_schema(relation, select_sql, *, mode='append_new_columns')

Best-effort: add new columns with inferred type.

Source code in src/fastflowtransform/executors/duckdb.py
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
def alter_table_sync_schema(
    self, relation: str, select_sql: str, *, mode: str = "append_new_columns"
) -> None:
    """
    Best-effort: add new columns with inferred type.
    """
    # Probe: empty projection from the SELECT (cleaned to avoid parser issues).
    body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
    probe = self._execute_basic(f"select * from ({body}) as q limit 0")
    cols = [c[0] for c in probe.description or []]
    existing = {
        r[0]
        for r in self._execute_basic(
            "select column_name from information_schema.columns "
            + "where lower(table_name)=lower(?)"
            + (" and lower(table_schema)=lower(?)" if self.schema else ""),
            ([relation, self.schema] if self.schema else [relation]),
        ).fetchall()
    }
    add = [c for c in cols if c not in existing]
    for c in add:
        col = _q_ident(c)
        target = self._qualified(relation)
        try:
            self._execute_basic(f"alter table {target} add column {col} varchar")
        except Exception:
            self._execute_basic(f"alter table {target} add column {col} varchar")

execute_hook_sql

execute_hook_sql(sql)

Execute one or multiple SQL statements for pre/post/on_run hooks.

Accepts a string that may contain ';'-separated statements.

Source code in src/fastflowtransform/executors/duckdb.py
376
377
378
379
380
381
382
def execute_hook_sql(self, sql: str) -> None:
    """
    Execute one or multiple SQL statements for pre/post/on_run hooks.

    Accepts a string that may contain ';'-separated statements.
    """
    self._exec_many(sql)

run_snapshot_sql

run_snapshot_sql(node, env)

Delegate snapshot materialization to the DuckDB snapshot runtime.

Source code in src/fastflowtransform/executors/duckdb.py
385
386
387
388
389
def run_snapshot_sql(self, node: Node, env: Environment) -> None:
    """
    Delegate snapshot materialization to the DuckDB snapshot runtime.
    """
    self.snapshot_runtime.run_snapshot_sql(node, env)

utest_load_relation_from_rows

utest_load_relation_from_rows(relation, rows)

Load rows into a DuckDB table for unit tests, fully qualified to this executor's schema/catalog.

Source code in src/fastflowtransform/executors/duckdb.py
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
def utest_load_relation_from_rows(self, relation: str, rows: list[dict]) -> None:
    """
    Load rows into a DuckDB table for unit tests, fully qualified to
    this executor's schema/catalog.
    """
    df = pd.DataFrame(rows)
    tmp = f"_ff_utest_tmp_{uuid.uuid4().hex[:12]}"
    self.con.register(tmp, df)
    try:
        target = self._qualified(relation)
        self._execute_basic(f"create or replace table {target} as select * from {tmp}")
    finally:
        with suppress(Exception):
            self.con.unregister(tmp)
        # Fallback for older DuckDB where unregister might not exist
        with suppress(Exception):
            self._execute_basic(f'drop view if exists "{tmp}"')

utest_read_relation

utest_read_relation(relation)

Read a relation as a DataFrame for unit-test assertions.

Source code in src/fastflowtransform/executors/duckdb.py
426
427
428
429
430
431
def utest_read_relation(self, relation: str) -> pd.DataFrame:
    """
    Read a relation as a DataFrame for unit-test assertions.
    """
    target = self._qualified(relation, quoted=False)
    return self.con.table(target).df()

utest_clean_target

utest_clean_target(relation)

Drop any table/view with the given name in this schema/catalog. Safe because utest uses its own DB/path.

Source code in src/fastflowtransform/executors/duckdb.py
433
434
435
436
437
438
439
440
441
442
443
def utest_clean_target(self, relation: str) -> None:
    """
    Drop any table/view with the given name in this schema/catalog.
    Safe because utest uses its own DB/path.
    """
    target = self._qualified(relation)
    # best-effort; ignore failures
    with suppress(Exception):
        self._execute_basic(f"drop view if exists {target}")
    with suppress(Exception):
        self._execute_basic(f"drop table if exists {target}")

collect_docs_columns

collect_docs_columns()

Best-effort column metadata for docs (schema-aware, supports catalog).

Source code in src/fastflowtransform/executors/duckdb.py
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
def collect_docs_columns(self) -> dict[str, list[ColumnInfo]]:
    """
    Best-effort column metadata for docs (schema-aware, supports catalog).
    """
    where: list[str] = []
    params: list[str] = []

    if self.catalog:
        where.append("lower(table_catalog) = lower(?)")
        params.append(self.catalog)
    if self.schema:
        where.append("lower(table_schema) = lower(?)")
        params.append(self.schema)
    else:
        where.append("table_schema in ('main','temp')")

    where_sql = " AND ".join(where) if where else "1=1"
    sql = f"""
    select table_name, column_name, data_type, is_nullable
    from information_schema.columns
    where {where_sql}
    order by table_schema, table_name, ordinal_position
    """

    try:
        rows = self._execute_basic(sql, params or None).fetchall()
    except Exception:
        return {}

    out: dict[str, list[ColumnInfo]] = {}
    for table, col, dtype, nullable in rows:
        out.setdefault(table, []).append(
            ColumnInfo(col, str(dtype), str(nullable) in (True, "YES", "Yes"))
        )
    return out

introspect_column_physical_type

introspect_column_physical_type(table, column)

DuckDB: read data_type from information_schema.columns for a single column.

Source code in src/fastflowtransform/executors/duckdb.py
523
524
525
526
527
528
529
def introspect_column_physical_type(self, table: str, column: str) -> str | None:
    """
    DuckDB: read `data_type` from information_schema.columns for a single column.
    """
    rows = self._introspect_columns_metadata(table, column=column)
    # rows: [(column_name, data_type), ...]
    return rows[0][1] if rows else None

introspect_table_physical_schema

introspect_table_physical_schema(table)

DuckDB: return {column_name: data_type} for all columns of table.

Source code in src/fastflowtransform/executors/duckdb.py
531
532
533
534
535
536
def introspect_table_physical_schema(self, table: str) -> dict[str, str]:
    """
    DuckDB: return {column_name: data_type} for all columns of `table`.
    """
    rows = self._introspect_columns_metadata(table, column=None)
    return {name: dtype for (name, dtype) in rows}

configure_contracts

configure_contracts(contracts, project_contracts)

Inject parsed contracts into this executor instance. The run engine should call this once at startup.

Source code in src/fastflowtransform/executors/base.py
148
149
150
151
152
153
154
155
156
157
158
def configure_contracts(
    self,
    contracts: Mapping[str, ContractsFileModel] | None,
    project_contracts: ProjectContractsModel | None,
) -> None:
    """
    Inject parsed contracts into this executor instance.
    The run engine should call this once at startup.
    """
    self._ff_contracts = contracts or {}
    self._ff_project_contracts = project_contracts

run_sql

run_sql(node, env)
Orchestrate SQL models

1) Render Jinja (ref/source/this) and strip leading {{ config(...) }}. 2) If the SQL is full DDL (CREATE …), execute it verbatim (passthrough). 3) Otherwise, normalize to CREATE OR REPLACE {TABLE|VIEW} AS . The body is CTE-aware (keeps WITH … SELECT … intact).

On failure, raise ModelExecutionError with a helpful snippet.

Source code in src/fastflowtransform/executors/base.py
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
def run_sql(self, node: Node, env: Environment) -> None:
    """
    Orchestrate SQL models:
      1) Render Jinja (ref/source/this) and strip leading {{ config(...) }}.
      2) If the SQL is full DDL (CREATE …), execute it verbatim (passthrough).
      3) Otherwise, normalize to CREATE OR REPLACE {TABLE|VIEW} AS <body>.
         The body is CTE-aware (keeps WITH … SELECT … intact).
    On failure, raise ModelExecutionError with a helpful snippet.
    """
    meta = getattr(node, "meta", {}) or {}
    if self._meta_is_incremental(meta):
        # Delegates to incremental engine: render, schema sync, merge/insert, etc.
        return _ff_incremental.run_or_dispatch(self, node, env)

    if self._meta_is_snapshot(meta):
        # Snapshots are executed via the dedicated CLI: `fft snapshot run`.
        raise ModelExecutionError(
            node_name=node.name,
            relation=relation_for(node.name),
            message=(
                "Snapshot models cannot be executed via 'fft run'. "
                "Use 'fft snapshot run' instead."
            ),
            sql_snippet="",
        )

    sql_rendered = self.render_sql(
        node,
        env,
        ref_resolver=lambda name: self._resolve_ref(name, env),
        source_resolver=self._resolve_source,
    )
    sql = self._strip_leading_config(sql_rendered).strip()

    materialization = (node.meta or {}).get("materialized", "table")
    if materialization == "ephemeral":
        return

    # 1) Direct DDL passthrough (CREATE [OR REPLACE] {TABLE|VIEW} …)
    if self._looks_like_direct_ddl(sql):
        try:
            self._execute_sql_direct(sql, node)
            return
        except NotImplementedError:
            # Engine doesn't implement direct DDL → fall back to normalized materialization.
            pass
        except Exception as e:
            raise ModelExecutionError(
                node_name=node.name,
                relation=relation_for(node.name),
                message=str(e),
                sql_snippet=sql,
            ) from e

    # 2) Normalized materialization path (CTE-safe body)
    body = self._selectable_body(sql).rstrip(" ;\n\t")
    target_sql = self._format_relation_for_ref(node.name)

    # Centralized SQL preview logging (applies to ALL engines)
    preview = (
        f"=== MATERIALIZE ===\n"
        f"-- model: {node.name}\n"
        f"-- materialized: {materialization}\n"
        f"-- target: {target_sql}\n"
        f"{body}\n"
    )
    echo_debug(preview)

    try:
        runtime = getattr(self, "runtime_contracts", None)
        # contracts only for TABLE materialization for now
        if runtime is not None and materialization == "table":
            contracts = getattr(self, "_ff_contracts", {}) or {}
            project_contracts = getattr(self, "_ff_project_contracts", None)

            # keying: prefer the logical table name (contracts.table),
            # but node.name or relation_for(node.name) is usually what you want.
            logical_name = relation_for(node.name)
            contract = contracts.get(logical_name) or contracts.get(node.name)

            ctx = runtime.build_context(
                node=node,
                relation=logical_name,
                physical_table=target_sql,
                contract=contract,
                project_contracts=project_contracts,
                is_incremental=self._meta_is_incremental(meta),
            )
            # Engine-specific enforcement (verify/cast/off)
            runtime.apply_sql_contracts(ctx=ctx, select_body=body)
        else:
            # Old behavior
            self._apply_sql_materialization(node, target_sql, body, materialization)
    except Exception as e:
        preview = f"-- materialized={materialization}\n-- target={target_sql}\n{body}"
        raise ModelExecutionError(
            node_name=node.name,
            relation=relation_for(node.name),
            message=str(e),
            sql_snippet=preview,
        ) from e

configure_query_budget_limit

configure_query_budget_limit(limit)

Inject a configured per-query byte limit (e.g. from budgets.yml).

Source code in src/fastflowtransform/executors/base.py
575
576
577
578
579
580
581
582
583
584
585
586
587
def configure_query_budget_limit(self, limit: int | None) -> None:
    """
    Inject a configured per-query byte limit (e.g. from budgets.yml).
    """
    if limit is None:
        self._ff_configured_query_limit = None
        return
    try:
        iv = int(limit)
    except Exception:
        self._ff_configured_query_limit = None
        return
    self._ff_configured_query_limit = iv if iv > 0 else None

reset_node_stats

reset_node_stats()

Reset per-node statistics buffer.

The run engine calls this before executing a model so that all stats recorded via _record_query_stats(...) belong to that node.

Source code in src/fastflowtransform/executors/base.py
627
628
629
630
631
632
633
634
635
def reset_node_stats(self) -> None:
    """
    Reset per-node statistics buffer.

    The run engine calls this before executing a model so that all
    stats recorded via `_record_query_stats(...)` belong to that node.
    """
    # just clear the buffer; next recording will re-create it
    self._ff_query_stats_buffer = []

get_node_stats

get_node_stats()

Aggregate buffered QueryStats into a simple dict:

{
  "bytes_scanned": <sum>,
  "rows": <sum>,
  "query_duration_ms": <sum>,
}

Called by the run engine after a node finishes.

Source code in src/fastflowtransform/executors/base.py
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
def get_node_stats(self) -> dict[str, int]:
    """
    Aggregate buffered QueryStats into a simple dict:

        {
          "bytes_scanned": <sum>,
          "rows": <sum>,
          "query_duration_ms": <sum>,
        }

    Called by the run engine after a node finishes.
    """
    stats_list = self._drain_query_stats()
    if not stats_list:
        return {}

    total_bytes = 0
    total_rows = 0
    total_duration = 0

    for s in stats_list:
        if s.bytes_processed is not None:
            total_bytes += int(s.bytes_processed)
        if s.rows is not None:
            total_rows += int(s.rows)
        if s.duration_ms is not None:
            total_duration += int(s.duration_ms)

    return {
        "bytes_scanned": total_bytes,
        "rows": total_rows,
        "query_duration_ms": total_duration,
    }

run_python

run_python(node)

Execute the Python model for a given node and materialize its result.

Source code in src/fastflowtransform/executors/base.py
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
def run_python(self, node: Node) -> None:
    """Execute the Python model for a given node and materialize its result."""
    func = REGISTRY.py_funcs[node.name]
    deps = REGISTRY.nodes[node.name].deps or []

    self._reset_http_ctx(node)

    args, argmap = self._build_python_inputs(node, deps)
    requires = REGISTRY.py_requires.get(node.name, {})
    if deps:
        # Required-columns check works against the mapping
        self._validate_required(node.name, argmap, requires)

    # out = self._execute_python_func(func, arg, node)
    out = self._execute_python_func(func, args, node)

    target = relation_for(node.name)
    meta = getattr(node, "meta", {}) or {}
    mat = self._resolve_materialization_strategy(meta)

    # ---------- Runtime contracts for Python models ----------
    runtime = getattr(self, "runtime_contracts", None)
    ctx = None
    took_over = False

    if runtime is not None:
        contracts = getattr(self, "_ff_contracts", {}) or {}
        project_contracts = getattr(self, "_ff_project_contracts", None)

        logical = target  # usually relation_for(node.name)
        contract = contracts.get(logical) or contracts.get(node.name)

        if contract is not None or project_contracts is not None:
            physical_table = self._format_relation_for_ref(node.name)
            ctx = runtime.build_context(
                node=node,
                relation=logical,
                physical_table=physical_table,
                contract=contract,
                project_contracts=project_contracts,
                is_incremental=(mat == "incremental"),
            )

            # Optional pre-coercion (default is no-op).
            if hasattr(runtime, "coerce_frame_schema"):
                out = runtime.coerce_frame_schema(out, ctx)

            # Allow engine-specific runtime to take over Python materialization
            if mat == "table" and hasattr(runtime, "materialize_python"):
                took_over = bool(runtime.materialize_python(ctx=ctx, df=out))

    # ---------- Materialization ----------
    if not took_over:
        if mat == "incremental":
            self._materialize_incremental(target, out, node, meta)
        elif mat == "view":
            self._materialize_view(target, out, node)
        else:
            self._materialize_relation(target, out, node)

    if ctx is not None and runtime is not None:
        runtime.verify_after_materialization(ctx=ctx)

    self._snapshot_http_ctx(node)

normalize_physical_type

normalize_physical_type(t)

Canonicalize a physical type string for comparisons (DQ + contracts).

Default: just strip + lower. Engines may override to account for dialect quirks in information_schema (e.g. Postgres timestamp variants, Snowflake VARCHAR(…) / NUMBER(…)).

Source code in src/fastflowtransform/executors/base.py
1197
1198
1199
1200
1201
1202
1203
1204
1205
def normalize_physical_type(self, t: str | None) -> str:
    """
    Canonicalize a physical type string for comparisons (DQ + contracts).

    Default: just strip + lower.
    Engines may override to account for dialect quirks in information_schema
    (e.g. Postgres timestamp variants, Snowflake VARCHAR(…) / NUMBER(…)).
    """
    return (t or "").strip().lower()