Skip to content

fastflowtransform.executors.databricks_spark_exec

DatabricksSparkExecutor

Bases: BaseExecutor[DataFrame]

Source code in src/fastflowtransform/executors/databricks_spark_exec.py
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
class DatabricksSparkExecutor(BaseExecutor[SDF]):
    ENGINE_NAME = "databricks_spark"
    """Spark/Databricks executor without pandas: Python models operate on Spark DataFrames."""

    def __init__(
        self,
        master: str = "local[*]",
        app_name: str = "fastflowtransform",
        *,
        extra_conf: dict[str, Any] | None = None,
        warehouse_dir: str | None = None,
        use_hive_metastore: bool = False,
        catalog: str | None = None,
        database: str | None = None,
        table_format: str | None = "parquet",
        table_options: dict[str, Any] | None = None,
    ):
        builder = SparkSession.builder.master(master).appName(app_name)

        warehouse_path: Path | None = None
        if warehouse_dir:
            warehouse_path = Path(warehouse_dir).expanduser()
            if not warehouse_path.is_absolute():
                warehouse_path = Path.cwd() / warehouse_path
            warehouse_path.mkdir(parents=True, exist_ok=True)
            builder = builder.config("spark.sql.warehouse.dir", str(warehouse_path))

        if catalog:
            builder = builder.config("spark.sql.catalog.spark_catalog", catalog)

        if extra_conf:
            for key, value in extra_conf.items():
                if value is not None:
                    builder = builder.config(str(key), str(value))

        if use_hive_metastore:
            builder = builder.config("spark.sql.catalogImplementation", "hive")
            builder = builder.enableHiveSupport()

        self.spark = builder.getOrCreate()
        # Lightweight testing shim so tests can call executor.con.execute("SQL")
        self.con = _SparkConnShim(self.spark)
        self._registered_path_sources: dict[str, dict[str, Any]] = {}
        self.warehouse_dir = warehouse_path
        self.catalog = catalog
        self.database = database
        self.schema = database
        if database:
            self.spark.sql(f"CREATE DATABASE IF NOT EXISTS `{database}`")
            with suppress(Exception):
                self.spark.catalog.setCurrentDatabase(database)

        fmt = (table_format or "").strip().lower()
        self.spark_table_format: str | None = fmt or None
        if table_options:
            self.spark_table_options = {str(k): str(v) for k, v in table_options.items()}
        else:
            self.spark_table_options = {}

    # ---------- Frame hooks (required) ----------
    def _read_relation(self, relation: str, node: Node, deps: Iterable[str]) -> SDF:
        # relation may optionally be "db.table" (via source()/ref())
        return self.spark.table(relation)

    def _materialize_relation(self, relation: str, df: SDF, node: Node) -> None:
        if not self._is_frame(df):
            raise TypeError("Spark model must return a Spark DataFrame")
        storage_meta = self._storage_meta(node, relation)
        if storage_meta.get("path"):
            self._write_to_storage_path(relation, df, storage_meta)
            return
        # write as a table in Hive/Unity/Delta environments
        self._save_df_as_table(relation, df, storage=storage_meta)

    def _create_view_over_table(self, view_name: str, backing_table: str, node: Node) -> None:
        self.spark.sql(f"CREATE OR REPLACE VIEW `{view_name}` AS SELECT * FROM `{backing_table}`")

    def _validate_required(
        self, node_name: str, inputs: Any, requires: dict[str, set[str]]
    ) -> None:
        if not requires:
            return

        def cols(df: SDF) -> set[str]:
            return set(df.schema.fieldNames())

        errors: list[str] = []
        # Single dependency: requires typically contains exactly one entry (ignore the key)
        if isinstance(inputs, SDF):
            need = next(iter(requires.values()), set())
            missing = need - cols(inputs)
            if missing:
                errors.append(f"- missing columns: {sorted(missing)} | have={sorted(cols(inputs))}")
        else:
            # Multiple dependencies: keys in requires = physical relations (relation_for(dep))
            for rel, need in requires.items():
                if rel not in inputs:
                    errors.append(f"- missing dependency key '{rel}'")
                    continue
                missing = need - cols(inputs[rel])
                if missing:
                    errors.append(
                        f"- [{rel}] missing: {sorted(missing)} | have={sorted(cols(inputs[rel]))}"
                    )

        if errors:
            raise ValueError(
                "Required columns check failed for Spark model "
                f"'{node_name}'.\n" + "\n".join(errors)
            )

    def _columns_of(self, frame: SDF) -> list[str]:  # pragma: no cover
        return frame.schema.fieldNames()

    def _is_frame(self, obj: Any) -> bool:  # pragma: no cover
        return isinstance(obj, SDF)

    def _frame_name(self) -> str:  # pragma: no cover
        return "Spark"

    # ---- Helpers ----
    @staticmethod
    def _q_ident(value: str | None) -> str:
        if value is None:
            return ""
        return f"`{value.replace('`', '``')}`"

    def _storage_meta(self, node: Node | None, relation: str) -> dict[str, Any]:
        """
        Retrieve configured storage overrides for the logical node backing `relation`.
        """
        rel_clean = self._strip_quotes(relation)
        if node is not None:
            meta = dict((node.meta or {}).get("storage") or {})
            if meta:
                return meta
            lookup = storage.get_model_storage(node.name)
            if lookup:
                return lookup
        for cand in getattr(REGISTRY, "nodes", {}).values():
            try:
                if self._strip_quotes(relation_for(cand.name)) == rel_clean:
                    meta = dict((cand.meta or {}).get("storage") or {})
                    if meta:
                        return meta
                    lookup = storage.get_model_storage(cand.name)
                    if lookup:
                        return lookup
            except Exception:
                continue
        return storage.get_model_storage(rel_clean)

    def _write_to_storage_path(
        self, relation: str, df: SDF, storage_meta: dict[str, Any]
    ) -> None:  # pragma: no cover
        parts = self._identifier_parts(relation)
        identifier = ".".join(parts)
        storage.spark_write_to_path(
            self.spark,
            identifier,
            df,
            storage=storage_meta,
            default_format=self.spark_table_format,
            default_options=self.spark_table_options,
        )

    # ---- SQL hooks ----
    def _format_relation_for_ref(self, name: str) -> str:
        return self._q_ident(relation_for(name))

    def _format_source_reference(
        self, cfg: dict[str, Any], source_name: str, table_name: str
    ) -> str:
        location = cfg.get("location")
        identifier = cfg.get("identifier")

        if location:
            alias = identifier or f"__ff_src_{source_name}_{table_name}"
            fmt = cfg.get("format")
            if not fmt:
                raise KeyError(
                    f"Source {source_name}.{table_name} requires 'format' when using a location"
                )

            options = dict(cfg.get("options") or {})
            descriptor = {
                "location": location,
                "format": fmt,
                "options": options,
            }
            existing = self._registered_path_sources.get(alias)
            if existing != descriptor:
                reader = self.spark.read.format(fmt)
                if options:
                    reader = reader.options(**options)
                df = reader.load(location)
                df.createOrReplaceTempView(alias)
                self._registered_path_sources[alias] = descriptor
            return self._q_ident(alias)

        if not identifier:
            raise KeyError(f"Source {source_name}.{table_name} missing identifier")

        catalog = cfg.get("catalog") or cfg.get("database")
        schema = cfg.get("schema")
        parts = [p for p in (catalog, schema, identifier) if p]
        if not parts:
            parts = [identifier]
        return ".".join(self._q_ident(str(part)) for part in parts)

    # ---- Spark table helpers ----
    @staticmethod
    def _strip_quotes(identifier: str) -> str:
        return identifier.replace("`", "").replace('"', "")

    def _identifier_parts(self, identifier: str) -> list[str]:
        cleaned = self._strip_quotes(identifier)
        return [part for part in cleaned.split(".") if part]

    def _warehouse_base(self) -> Path | None:
        try:
            conf_val = self.spark.conf.get("spark.sql.warehouse.dir", "spark-warehouse")
        except Exception:
            conf_val = "spark-warehouse"

        if not isinstance(conf_val, str):
            conf_val = str(conf_val)
        parsed = urlparse(conf_val)
        scheme = (parsed.scheme or "").lower()

        if scheme and scheme != "file":
            return None

        if scheme == "file":
            if parsed.netloc and parsed.netloc not in {"", "localhost"}:
                return None
            raw_path = unquote(parsed.path or "")
            if not raw_path:
                return None
            base = Path(raw_path)
        else:
            base = Path(conf_val)

        if not base.is_absolute():
            base = Path.cwd() / base
        return base

    def _table_location(self, parts: list[str]) -> Path | None:
        base = self._warehouse_base()
        if base is None or not parts:
            return None

        filtered = [p for p in parts if p]
        if not filtered:
            return None

        catalog_cutoff = 3
        if len(filtered) >= catalog_cutoff and filtered[0].lower() in {"spark_catalog", "spark"}:
            filtered = filtered[1:]

        table = filtered[-1]
        schema_cutoff = 2
        schema = filtered[-2] if len(filtered) >= schema_cutoff else None

        location = base
        if schema:
            location = location / f"{schema}.db"
        return location / table

    def _save_df_as_table(
        self, identifier: str, df: SDF, *, storage: dict[str, Any] | None = None
    ) -> None:
        parts = self._identifier_parts(identifier)
        if not parts:
            raise ValueError(f"Invalid Spark table identifier: {identifier}")

        storage_meta = storage or self._storage_meta(None, identifier)
        if storage_meta.get("path"):
            self._write_to_storage_path(identifier, df, storage_meta)
            return

        table_name = ".".join(parts)
        target_location = self._table_location(parts)

        def _write() -> None:
            writer = df.write.mode("overwrite")
            if self.spark_table_format:
                writer = writer.format(self.spark_table_format)
            if self.spark_table_options:
                writer = writer.options(**self.spark_table_options)
            writer.saveAsTable(table_name)

        target_sql = ".".join(self._q_ident(p) for p in parts)
        with suppress(Exception):
            self.spark.sql(f"DROP TABLE IF EXISTS {target_sql}")
        if target_location and target_location.exists():
            with suppress(Exception):
                shutil.rmtree(target_location, ignore_errors=True)

        try:
            _write()
        except AnalysisException as exc:  # pragma: no cover - requires real Spark/Delta error
            message = str(exc)
            if target_location and "LOCATION_ALREADY_EXISTS" in message.upper():
                with suppress(Exception):
                    shutil.rmtree(target_location, ignore_errors=True)
                _write()
            else:
                raise

    def _create_or_replace_view(self, target_sql: str, select_body: str, node: Node) -> None:
        self.spark.sql(f"CREATE OR REPLACE VIEW {target_sql} AS {select_body}")

    def _create_or_replace_table(self, target_sql: str, select_body: str, node: Node) -> None:
        preview = f"-- target={target_sql}\n{select_body}"
        try:
            df = self.spark.sql(select_body)
            storage_meta = self._storage_meta(node, target_sql)
            self._save_df_as_table(target_sql, df, storage=storage_meta)
        except Exception as exc:
            raise ModelExecutionError(node.name, target_sql, str(exc), sql_snippet=preview) from exc

    def _create_or_replace_view_from_table(
        self, view_name: str, backing_table: str, node: Node
    ) -> None:
        self.spark.sql(f"CREATE OR REPLACE VIEW `{view_name}` AS SELECT * FROM `{backing_table}`")

    # ---- Meta hook ----
    def on_node_built(self, node: Node, relation: str, fingerprint: str) -> None:
        """After successful materialization, upsert _ff_meta (best-effort)."""
        try:
            ensure_meta_table(self)
            upsert_meta(self, node.name, relation, fingerprint, "databricks_spark")
        except Exception:
            pass

    # ── Incremental API (parity) ─────────────────────────────────────────
    def exists_relation(self, relation: str) -> bool:
        """Check whether a table/view exists (optionally qualified with database)."""
        db, tbl = _split_db_table(relation)
        if db:
            return bool(self.spark.catalog._jcatalog.tableExists(db, tbl))
        return self.spark.catalog.tableExists(tbl)

    def create_table_as(self, relation: str, select_sql: str) -> None:
        """CREATE TABLE AS with cleaned SELECT body."""
        body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
        df = self.spark.sql(body)
        self._save_df_as_table(relation, df)

    def incremental_insert(self, relation: str, select_sql: str) -> None:
        """INSERT INTO with cleaned SELECT body."""
        body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
        self.spark.sql(f"INSERT INTO {relation} {body}")

    def incremental_merge(self, relation: str, select_sql: str, unique_key: list[str]) -> None:
        """
        Try Delta MERGE (Databricks typical). If MERGE fails (non-Delta), fallback to full replace.
        """
        body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
        pred = " AND ".join([f"t.{k}=s.{k}" for k in unique_key]) or "FALSE"
        try:
            # Use inline subquery as source; SET * / INSERT * requires Delta ≥ 1.2 / Spark ≥ 3.4.
            self.spark.sql(
                f"""
                MERGE INTO {relation} AS t
                USING ({body}) AS s
                ON {pred}
                WHEN MATCHED THEN UPDATE SET *
                WHEN NOT MATCHED THEN INSERT *
                """
            )
        except Exception:
            # Fallback: Full replace is safer across lake formats
            df = self.spark.sql(body)
            self._save_df_as_table(relation, df)

    def alter_table_sync_schema(
        self, relation: str, select_sql: str, *, mode: str = "append_new_columns"
    ) -> None:
        """
        Best-effort additive schema sync:
          - infer select schema via LIMIT 0
          - add missing columns as STRING (safe default)
        """
        if mode not in {"append_new_columns", "sync_all_columns"}:
            return
        # Target schema
        try:
            target_df = self.spark.table(relation)
        except Exception:
            return
        existing = {f.name for f in target_df.schema.fields}
        # Output schema from the SELECT
        body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
        probe = self.spark.sql(f"SELECT * FROM ({body}) q LIMIT 0")
        to_add = [f for f in probe.schema.fields if f.name not in existing]
        if not to_add:
            return

        # Map types best-effort (Spark SQL types); default STRING
        def _spark_sql_type(dt: DataType) -> str:
            # Use simple, portable mapping for documentation UIs & broad compatibility
            return (
                getattr(dt, "simpleString", lambda: "string")().upper()
                if hasattr(dt, "simpleString")
                else "STRING"
            )

        cols_sql = ", ".join([f"`{f.name}` {_spark_sql_type(f.dataType)}" for f in to_add])
        self.spark.sql(f"ALTER TABLE {relation} ADD COLUMNS ({cols_sql})")

ENGINE_NAME class-attribute instance-attribute

ENGINE_NAME = 'databricks_spark'

Spark/Databricks executor without pandas: Python models operate on Spark DataFrames.

on_node_built

on_node_built(node, relation, fingerprint)

After successful materialization, upsert _ff_meta (best-effort).

Source code in src/fastflowtransform/executors/databricks_spark_exec.py
350
351
352
353
354
355
356
def on_node_built(self, node: Node, relation: str, fingerprint: str) -> None:
    """After successful materialization, upsert _ff_meta (best-effort)."""
    try:
        ensure_meta_table(self)
        upsert_meta(self, node.name, relation, fingerprint, "databricks_spark")
    except Exception:
        pass

exists_relation

exists_relation(relation)

Check whether a table/view exists (optionally qualified with database).

Source code in src/fastflowtransform/executors/databricks_spark_exec.py
359
360
361
362
363
364
def exists_relation(self, relation: str) -> bool:
    """Check whether a table/view exists (optionally qualified with database)."""
    db, tbl = _split_db_table(relation)
    if db:
        return bool(self.spark.catalog._jcatalog.tableExists(db, tbl))
    return self.spark.catalog.tableExists(tbl)

create_table_as

create_table_as(relation, select_sql)

CREATE TABLE AS with cleaned SELECT body.

Source code in src/fastflowtransform/executors/databricks_spark_exec.py
366
367
368
369
370
def create_table_as(self, relation: str, select_sql: str) -> None:
    """CREATE TABLE AS with cleaned SELECT body."""
    body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
    df = self.spark.sql(body)
    self._save_df_as_table(relation, df)

incremental_insert

incremental_insert(relation, select_sql)

INSERT INTO with cleaned SELECT body.

Source code in src/fastflowtransform/executors/databricks_spark_exec.py
372
373
374
375
def incremental_insert(self, relation: str, select_sql: str) -> None:
    """INSERT INTO with cleaned SELECT body."""
    body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
    self.spark.sql(f"INSERT INTO {relation} {body}")

incremental_merge

incremental_merge(relation, select_sql, unique_key)

Try Delta MERGE (Databricks typical). If MERGE fails (non-Delta), fallback to full replace.

Source code in src/fastflowtransform/executors/databricks_spark_exec.py
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
def incremental_merge(self, relation: str, select_sql: str, unique_key: list[str]) -> None:
    """
    Try Delta MERGE (Databricks typical). If MERGE fails (non-Delta), fallback to full replace.
    """
    body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
    pred = " AND ".join([f"t.{k}=s.{k}" for k in unique_key]) or "FALSE"
    try:
        # Use inline subquery as source; SET * / INSERT * requires Delta ≥ 1.2 / Spark ≥ 3.4.
        self.spark.sql(
            f"""
            MERGE INTO {relation} AS t
            USING ({body}) AS s
            ON {pred}
            WHEN MATCHED THEN UPDATE SET *
            WHEN NOT MATCHED THEN INSERT *
            """
        )
    except Exception:
        # Fallback: Full replace is safer across lake formats
        df = self.spark.sql(body)
        self._save_df_as_table(relation, df)

alter_table_sync_schema

alter_table_sync_schema(relation, select_sql, *, mode='append_new_columns')
Best-effort additive schema sync
  • infer select schema via LIMIT 0
  • add missing columns as STRING (safe default)
Source code in src/fastflowtransform/executors/databricks_spark_exec.py
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
def alter_table_sync_schema(
    self, relation: str, select_sql: str, *, mode: str = "append_new_columns"
) -> None:
    """
    Best-effort additive schema sync:
      - infer select schema via LIMIT 0
      - add missing columns as STRING (safe default)
    """
    if mode not in {"append_new_columns", "sync_all_columns"}:
        return
    # Target schema
    try:
        target_df = self.spark.table(relation)
    except Exception:
        return
    existing = {f.name for f in target_df.schema.fields}
    # Output schema from the SELECT
    body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
    probe = self.spark.sql(f"SELECT * FROM ({body}) q LIMIT 0")
    to_add = [f for f in probe.schema.fields if f.name not in existing]
    if not to_add:
        return

    # Map types best-effort (Spark SQL types); default STRING
    def _spark_sql_type(dt: DataType) -> str:
        # Use simple, portable mapping for documentation UIs & broad compatibility
        return (
            getattr(dt, "simpleString", lambda: "string")().upper()
            if hasattr(dt, "simpleString")
            else "STRING"
        )

    cols_sql = ", ".join([f"`{f.name}` {_spark_sql_type(f.dataType)}" for f in to_add])
    self.spark.sql(f"ALTER TABLE {relation} ADD COLUMNS ({cols_sql})")

run_sql

run_sql(node, env)
Orchestrate SQL models

1) Render Jinja (ref/source/this) and strip leading {{ config(...) }}. 2) If the SQL is full DDL (CREATE …), execute it verbatim (passthrough). 3) Otherwise, normalize to CREATE OR REPLACE {TABLE|VIEW} AS . The body is CTE-aware (keeps WITH … SELECT … intact).

On failure, raise ModelExecutionError with a helpful snippet.

Source code in src/fastflowtransform/executors/base.py
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
def run_sql(self, node: Node, env: Environment) -> None:
    """
    Orchestrate SQL models:
      1) Render Jinja (ref/source/this) and strip leading {{ config(...) }}.
      2) If the SQL is full DDL (CREATE …), execute it verbatim (passthrough).
      3) Otherwise, normalize to CREATE OR REPLACE {TABLE|VIEW} AS <body>.
         The body is CTE-aware (keeps WITH … SELECT … intact).
    On failure, raise ModelExecutionError with a helpful snippet.
    """
    sql_rendered = self.render_sql(
        node,
        env,
        ref_resolver=lambda name: self._resolve_ref(name, env),
        source_resolver=self._resolve_source,
    )
    sql = self._strip_leading_config(sql_rendered).strip()

    materialization = (node.meta or {}).get("materialized", "table")
    if materialization == "ephemeral":
        return

    # 1) Direct DDL passthrough (CREATE [OR REPLACE] {TABLE|VIEW} …)
    if self._looks_like_direct_ddl(sql):
        try:
            self._execute_sql_direct(sql, node)
            return
        except NotImplementedError:
            # Engine doesn't implement direct DDL → fall back to normalized materialization.
            pass
        except Exception as e:
            raise ModelExecutionError(
                node_name=node.name,
                relation=relation_for(node.name),
                message=str(e),
                sql_snippet=sql,
            ) from e

    # 2) Normalized materialization path (CTE-safe body)
    body = self._selectable_body(sql).rstrip(" ;\n\t")
    target_sql = self._format_relation_for_ref(node.name)

    # Centralized SQL preview logging (applies to ALL engines)
    preview = (
        f"=== MATERIALIZE ===\n"
        f"-- model: {node.name}\n"
        f"-- materialized: {materialization}\n"
        f"-- target: {target_sql}\n"
        f"{body}\n"
    )
    echo_debug(preview)

    try:
        self._apply_sql_materialization(node, target_sql, body, materialization)
    except Exception as e:
        preview = f"-- materialized={materialization}\n-- target={target_sql}\n{body}"
        raise ModelExecutionError(
            node_name=node.name,
            relation=relation_for(node.name),
            message=str(e),
            sql_snippet=preview,
        ) from e