Skip to content

fastflowtransform.executors.databricks_spark

DatabricksSparkExecutor

Bases: BaseExecutor[SDF]

Spark/Databricks executor without pandas: Python models operate on Spark DataFrames.

Source code in src/fastflowtransform/executors/databricks_spark.py
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
class DatabricksSparkExecutor(BaseExecutor[SDF]):
    """Spark/Databricks executor without pandas: Python models operate on Spark DataFrames."""

    ENGINE_NAME = "databricks_spark"
    _BUDGET_GUARD = BudgetGuard(
        env_var="FF_SPK_MAX_BYTES",
        estimator_attr="_estimate_query_bytes",
        engine_label="Databricks/Spark",
        what="query",
    )

    def __init__(
        self,
        master: str = "local[*]",
        app_name: str = "fastflowtransform",
        *,
        extra_conf: dict[str, Any] | None = None,
        warehouse_dir: str | None = None,
        use_hive_metastore: bool = False,
        catalog: str | None = None,
        database: str | None = None,
        table_format: str | None = "parquet",
        table_options: dict[str, Any] | None = None,
        spark: SparkSession | None = None,
    ):
        extra_conf = dict(extra_conf or {})
        self._user_spark = spark

        builder = SparkSession.builder.master(master).appName(app_name)
        catalog_key = "spark.sql.catalog.spark_catalog"
        ext_key = "spark.sql.extensions"

        # Warehouse directory
        warehouse_path: Path | None = None
        if warehouse_dir:
            warehouse_path = Path(warehouse_dir).expanduser()
            if not warehouse_path.is_absolute():
                warehouse_path = Path.cwd() / warehouse_path
            warehouse_path.mkdir(parents=True, exist_ok=True)
            builder = builder.config("spark.sql.warehouse.dir", str(warehouse_path))

        catalog_value = _as_nonempty_str(catalog)
        if catalog_value:
            builder = builder.config(catalog_key, catalog_value)

        # Extra config
        if extra_conf:
            for key, value in extra_conf.items():
                if value is not None:
                    builder = builder.config(str(key), str(value))

        if use_hive_metastore:
            builder = builder.config("spark.sql.catalogImplementation", "hive")
            builder = builder.enableHiveSupport()

        fmt_requested = (table_format or "").strip().lower()
        wants_delta = fmt_requested == "delta"

        # Apply Delta configuration last, after all Spark configs are set.
        if not wants_delta and self._user_spark is None:
            catalog_overridden = bool(catalog_value)
            if not catalog_overridden:
                # Leave Spark catalog untouched; downstream environments may supply
                # their own defaults (e.g., Unity, Glue). We only force a catalog
                # when the user explicitly opts into Delta.
                pass

        # Apply Delta configuration last, after all Spark configs are set.
        if wants_delta and self._user_spark is None:
            if configure_spark_with_delta_pip is None:
                raise RuntimeError(
                    "Delta table_format requested for DatabricksSparkExecutor, "
                    "but 'delta-spark' is not installed. "
                    "Install it with: pip install delta-spark"
                )
            builder = configure_spark_with_delta_pip(builder)

            ext_value = _as_nonempty_str(extra_conf.get(ext_key))
            merged_ext, changed = _ensure_csv_token(ext_value, _DELTA_EXTENSION)
            if changed or ext_value is None:
                builder = builder.config(ext_key, merged_ext)

            extra_catalog = _as_nonempty_str(extra_conf.get(catalog_key))
            catalog_overridden = bool(catalog_value) or bool(extra_catalog)
            if not catalog_overridden:
                builder = builder.config(catalog_key, _DELTA_CATALOG)

        self.spark = self._user_spark or builder.getOrCreate()
        # Lightweight testing shim so tests can call executor.con.execute("SQL")
        self.con = _SparkConnShim(self.spark)
        self._registered_path_sources: dict[str, dict[str, Any]] = {}
        self.warehouse_dir = warehouse_path
        self.catalog = catalog
        self.database = database
        self.schema = database

        if database:
            self._execute_sql(f"CREATE DATABASE IF NOT EXISTS `{database}`")
            with suppress(Exception):
                self.spark.catalog.setCurrentDatabase(database)

        self.spark_table_format: str | None = fmt_requested or None
        self.spark_table_options = {str(k): str(v) for k, v in (table_options or {}).items()}

        # ---- Delta availability check ----
        self._delta_ok = _has_delta(self.spark)

        # Log capabilities whenever Delta is requested or detected
        if wants_delta or self._delta_ok:
            _log_delta_capabilities(
                self.spark,
                wants_delta=wants_delta,
                delta_ok=self._delta_ok,
                user_spark=self._user_spark,
                table_format=self.spark_table_format,
            )

        if wants_delta and not self._delta_ok and self._user_spark is None:
            raise RuntimeError(
                "Delta table_format requested, but the Delta Lake classes are not available. "
                "Install delta-spark or provide a SparkSession already configured for Delta."
            )

        # Unified format handler for managed tables (Delta, Iceberg, generic Parquet/ORC/etc.)
        self._format_handler: SparkFormatHandler = get_spark_format_handler(
            self.spark_table_format,
            self.spark,
            table_options=self.spark_table_options,
            sql_runner=self._execute_sql,
        )

        self._spark_default_size = self._detect_default_size()

    # ---------- Cost estimation & central execution ----------

    def _detect_default_size(self) -> int:
        """
        Detect Spark's defaultSizeInBytes sentinel.

        - Prefer spark.sql.defaultSizeInBytes if available.
        - Fall back to Long.MaxValue (2^63 - 1) otherwise.
        """
        try:
            conf_val = self.spark.conf.get("spark.sql.defaultSizeInBytes")
            if conf_val is not None:
                return int(conf_val)
        except Exception:
            # config not set / older Spark / weird environment
            pass

        # Fallback: Spark uses Long.MaxValue by default
        return 2**63 - 1  # 9223372036854775807

    def _parse_spark_stats_size(self, size_val: Any) -> int | None:
        if size_val is None:
            return None
        try:
            size_int = int(str(size_val))
        except Exception:
            return None
        return size_int if size_int > 0 else None

    def _jplan_uses_default_size(self, jplan: Any) -> bool:
        """
        Recursively walk a JVM LogicalPlan and return True if any node's
        stats.sizeInBytes equals spark.sql.defaultSizeInBytes.
        """
        if self._spark_default_size is None:
            return False

        try:
            stats = jplan.stats()
            size_val = stats.sizeInBytes()
            size_int = int(str(size_val))
            if size_int == self._spark_default_size:
                return True
        except Exception:
            # ignore stats errors and keep walking
            pass

        # children() is a Scala Seq[LogicalPlan]; iterate via .size() / .apply(i)
        try:
            children = jplan.children()
            n = children.size()
            for idx in range(n):
                child = children.apply(idx)
                if self._jplan_uses_default_size(child):
                    return True
        except Exception:
            # if we can't inspect children, stop here
            pass

        return False

    def _spark_plan_bytes(self, sql: str) -> int | None:
        """
        Inspect the optimized logical plan via the JVM and return sizeInBytes
        as an integer, or None if not available.

        This does *not* execute the query; it only goes through analysis/planning.
        """
        try:
            normalized = self._selectable_body(sql).rstrip(";\n\t ")
            if not normalized:
                normalized = sql
        except Exception:
            normalized = sql

        stmt = normalized.lstrip().lower()
        if not stmt.startswith(("select", "with")):
            # DDL/DML statements (ALTER/INSERT/etc.) should not be executed twice.
            return None

        try:
            df = self.spark.sql(normalized)

            jdf = cast(Any, getattr(df, "_jdf", None))
            if jdf is None:
                return None

            qe = jdf.queryExecution()
            jplan = qe.optimizedPlan()

            # If any node relies on defaultSizeInBytes, we don't trust the stats
            if self._jplan_uses_default_size(jplan):
                return None

            stats = jplan.stats()

            size_attr = getattr(stats, "sizeInBytes", None)
            size_val = size_attr() if callable(size_attr) else size_attr

            return self._parse_spark_stats_size(size_val)
        except Exception:
            return None

    def _estimate_query_bytes(self, sql: str) -> int | None:
        """
        Best-effort logical-plan size estimate using Spark's stats.

        It inspects the optimized plan's sizeInBytes via the JVM API without
        executing the query. If unavailable or unsupported, returns None and
        the guard is effectively disabled.
        """
        return self._spark_plan_bytes(sql)

    def _execute_sql(self, sql: str) -> SDF:
        """
        Central Spark SQL runner.

        - Guarded by FF_SPK_MAX_BYTES via the cost guard.
        - Returns a Spark DataFrame (same as spark.sql).
        - Records best-effort query stats for run_results.json.
        """

        def _exec() -> SDF:
            return self.spark.sql(sql)

        return run_sql_with_budget(
            self,
            sql,
            guard=self._BUDGET_GUARD,
            exec_fn=_exec,
            estimate_fn=self._spark_plan_bytes,
            post_estimate_fn=lambda _, __: self._spark_plan_bytes(sql),
        )

    # ---------- Frame hooks (required) ----------
    def _read_relation(self, relation: str, node: Node, deps: Iterable[str]) -> SDF:
        # relation may optionally be "db.table" (via source()/ref())
        physical = self._format_handler.qualify_identifier(relation, database=self.database)
        return self.spark.table(physical)

    def _materialize_relation(self, relation: str, df: SDF, node: Node) -> None:
        if not self._is_frame(df):
            raise TypeError("Spark model must return a Spark DataFrame")
        storage_meta = self._storage_meta(node, relation)
        # Delegate managed/unmanaged handling to _save_df_as_table so Iceberg
        # (or other handlers) can consistently enforce managed tables.
        start = perf_counter()
        self._save_df_as_table(relation, df, storage=storage_meta)
        duration_ms = int((perf_counter() - start) * 1000)
        self._record_spark_dataframe_stats(df, duration_ms)

    def _create_view_over_table(self, view_name: str, backing_table: str, node: Node) -> None:
        """Compatibility hook: create a simple SELECT * view over an existing table."""
        view_sql = self._sql_identifier(view_name)
        backing_sql = self._sql_identifier(backing_table)
        self._execute_sql(f"CREATE OR REPLACE VIEW {view_sql} AS SELECT * FROM {backing_sql}")

    def _validate_required(
        self, node_name: str, inputs: Any, requires: dict[str, set[str]]
    ) -> None:
        if not requires:
            return

        def cols(df: SDF) -> set[str]:
            return set(df.schema.fieldNames())

        errors: list[str] = []
        # Single dependency: requires typically contains exactly one entry (ignore the key)
        if isinstance(inputs, SDF):
            need = next(iter(requires.values()), set())
            missing = need - cols(inputs)
            if missing:
                errors.append(f"- missing columns: {sorted(missing)} | have={sorted(cols(inputs))}")
        else:
            # Multiple dependencies: keys in requires = physical relations (relation_for(dep))
            for rel, need in requires.items():
                if rel not in inputs:
                    errors.append(f"- missing dependency key '{rel}'")
                    continue
                missing = need - cols(inputs[rel])
                if missing:
                    errors.append(
                        f"- [{rel}] missing: {sorted(missing)} | have={sorted(cols(inputs[rel]))}"
                    )

        if errors:
            raise ValueError(
                "Required columns check failed for Spark model "
                f"'{node_name}'.\n" + "\n".join(errors)
            )

    def _columns_of(self, frame: SDF) -> list[str]:  # pragma: no cover
        return frame.schema.fieldNames()

    def _is_frame(self, obj: Any) -> bool:  # pragma: no cover
        return isinstance(obj, SDF)

    def _frame_name(self) -> str:  # pragma: no cover
        return "Spark"

    # ---- Helpers ----
    @staticmethod
    def _q_ident(value: str | None) -> str:
        if value is None:
            return ""
        return f"`{value.replace('`', '``')}`"

    def _storage_meta(self, node: Node | None, relation: str) -> dict[str, Any]:
        """
        Retrieve configured storage overrides for the logical node backing `relation`.
        """
        rel_clean = self._strip_quotes(relation)

        # 1) Direct node meta / storage config
        if node is not None:
            meta = dict((node.meta or {}).get("storage") or {})
            if meta:
                return meta
            lookup = storage.get_model_storage(node.name)
            if lookup:
                return lookup

        # 2) Search REGISTRY nodes by relation_for(name)
        for cand in getattr(REGISTRY, "nodes", {}).values():
            try:
                if self._strip_quotes(relation_for(cand.name)) == rel_clean:
                    meta = dict((cand.meta or {}).get("storage") or {})
                    if meta:
                        return meta
                    lookup = storage.get_model_storage(cand.name)
                    if lookup:
                        return lookup
            except Exception:
                continue

        # 3) Direct storage override by relation name
        return storage.get_model_storage(rel_clean)

    def _write_to_storage_path(self, relation: str, df: SDF, storage_meta: dict[str, Any]) -> None:
        parts = self._identifier_parts(relation)
        identifier = ".".join(parts)

        storage.spark_write_to_path(
            self.spark,
            identifier,
            df,
            storage=storage_meta,
            default_format=self.spark_table_format,
            default_options=self.spark_table_options,
        )

        path = storage_meta.get("path")
        if path:
            with suppress(Exception):
                self.spark.catalog.refreshByPath(path)

    def _record_spark_dataframe_stats(self, df: SDF, duration_ms: int) -> None:
        adapter = SparkDataFrameStatsAdapter(self._spark_dataframe_bytes)
        stats = adapter.collect(df, duration_ms=duration_ms)
        self._record_query_stats(stats)

    def _spark_dataframe_bytes(self, df: SDF) -> int | None:
        try:
            jdf = cast(Any, getattr(df, "_jdf", None))
            if jdf is None:
                return None

            qe = jdf.queryExecution()
            jplan = qe.optimizedPlan()

            if self._jplan_uses_default_size(jplan):
                return None

            stats = jplan.stats()
            size_attr = getattr(stats, "sizeInBytes", None)
            size_val = size_attr() if callable(size_attr) else size_attr
            return self._parse_spark_stats_size(size_val)
        except Exception:
            return None

    # ---- SQL hooks ----
    def _format_relation_for_ref(self, name: str) -> str:
        """
        Format a ref(...) relation for use in SQL.

        - Default: just backtick-quote the logical relation name.
        - Iceberg: qualify with the Iceberg catalog so that models point at
          tables in `iceberg.<db>.<table>`, matching the seed & incremental
          write path.
        """
        base = relation_for(name)
        return self._sql_identifier(base)

    def _this_identifier(self, node: Node) -> str:
        base = relation_for(node.name)
        return self._sql_identifier(base)

    def _format_source_reference(
        self, cfg: dict[str, Any], source_name: str, table_name: str
    ) -> str:
        location = cfg.get("location")
        identifier = cfg.get("identifier")

        if location:
            alias = identifier or f"__ff_src_{source_name}_{table_name}"
            fmt_src = cfg.get("format")
            if not fmt_src:
                raise KeyError(
                    f"Source {source_name}.{table_name} requires 'format' when using a location"
                )

            options = dict(cfg.get("options") or {})
            descriptor = {
                "location": location,
                "format": fmt_src,
                "options": options,
            }
            existing = self._registered_path_sources.get(alias)
            if existing != descriptor:
                reader = self.spark.read.format(fmt_src)
                if options:
                    reader = reader.options(**options)
                df = reader.load(location)
                df.createOrReplaceTempView(alias)
                self._registered_path_sources[alias] = descriptor
            return self._q_ident(alias)

        if not identifier:
            raise KeyError(f"Source {source_name}.{table_name} missing identifier")
        catalog = cfg.get("catalog")
        schema = cfg.get("schema") or cfg.get("database")
        if catalog or schema:
            logical = ".".join([p for p in (catalog, schema, identifier) if p])
            return self._sql_identifier(logical)

        fallback_db = self.database or self.spark.catalog.currentDatabase()
        return self._sql_identifier(str(identifier), database=fallback_db)

    def _format_test_table(self, table: str | None) -> str | None:
        formatted = super()._format_test_table(table)
        if not isinstance(formatted, str):
            return formatted
        return self._format_handler.format_test_table(formatted, database=self.database)

    # ---- Spark table helpers ----
    @staticmethod
    def _strip_quotes(identifier: str) -> str:
        return identifier.replace("`", "").replace('"', "")

    def _identifier_parts(self, identifier: str) -> list[str]:
        cleaned = self._strip_quotes(identifier)
        return [part for part in cleaned.split(".") if part]

    def _physical_identifier(self, identifier: str, *, database: str | None = None) -> str:
        db = database if database is not None else self.database
        return self._format_handler.qualify_identifier(identifier, database=db)

    def _sql_identifier(self, identifier: str, *, database: str | None = None) -> str:
        db = database if database is not None else self.database
        return self._format_handler.format_identifier_for_sql(identifier, database=db)

    def _warehouse_base(self) -> Path | None:
        try:
            conf_val = self.spark.conf.get("spark.sql.warehouse.dir", "spark-warehouse")
        except Exception:
            conf_val = "spark-warehouse"

        if not isinstance(conf_val, str):
            conf_val = str(conf_val)
        parsed = urlparse(conf_val)
        scheme = (parsed.scheme or "").lower()

        if scheme and scheme != "file":
            return None

        if scheme == "file":
            if parsed.netloc and parsed.netloc not in {"", "localhost"}:
                return None
            raw_path = unquote(parsed.path or "")
            if not raw_path:
                return None
            base = Path(raw_path)
        else:
            base = Path(conf_val)

        if not base.is_absolute():
            base = Path.cwd() / base
        return base

    def _table_location(self, parts: list[str]) -> Path | None:
        base = self._warehouse_base()
        if base is None or not parts:
            return None

        filtered = [p for p in parts if p]
        if not filtered:
            return None

        catalog_cutoff = 3
        if len(filtered) >= catalog_cutoff and filtered[0].lower() in {"spark_catalog", "spark"}:
            filtered = filtered[1:]

        table = filtered[-1]
        schema_cutoff = 2
        schema = filtered[-2] if len(filtered) >= schema_cutoff else None

        location = base
        if schema:
            location = location / f"{schema}.db"
        return location / table

    def _save_df_as_table(
        self, identifier: str, df: SDF, *, storage: dict[str, Any] | None = None
    ) -> None:
        """
        Save a DataFrame as a (managed or unmanaged) table.

        - If storage["path"] is set -> unmanaged/path-based via storage.spark_write_to_path.
        - Otherwise -> managed table via the configured format handler
          (Delta, Parquet, future Iceberg, ...).
        """
        parts = self._identifier_parts(identifier)
        if not parts:
            raise ValueError(f"Invalid Spark table identifier: {identifier}")

        storage_meta = dict(storage or self._storage_meta(None, identifier) or {})

        path_override = storage_meta.get("path")
        if path_override and not self._format_handler.allows_unmanaged_paths():
            echo_debug(
                f"Ignoring storage.path override for table '{identifier}' because "
                f"format '{self._format_handler.table_format or 'default'}' "
                "requires managed tables."
            )
            path_override = None

        if path_override:
            self._write_to_storage_path(identifier, df, storage_meta)
            return

        table_name = ".".join(parts)
        # Managed tables: delegate to the format handler (Delta, Parquet, Iceberg, ...)
        self._format_handler.save_df_as_table(table_name, df)

        with suppress(Exception):
            self._execute_sql(
                f"ANALYZE TABLE {self._sql_identifier(table_name)} COMPUTE STATISTICS"
            )

    def _create_or_replace_view(self, target_sql: str, select_body: str, node: Node) -> None:
        self._execute_sql(f"CREATE OR REPLACE VIEW {target_sql} AS {select_body}")

    def _create_or_replace_table(self, target_sql: str, select_body: str, node: Node) -> None:
        preview = f"-- target={target_sql}\n{select_body}"
        try:
            df = self._execute_sql(select_body)
            storage_meta = self._storage_meta(node, target_sql)
            self._save_df_as_table(target_sql, df, storage=storage_meta)
        except Exception as exc:
            raise ModelExecutionError(node.name, target_sql, str(exc), sql_snippet=preview) from exc

    def _create_or_replace_view_from_table(
        self, view_name: str, backing_table: str, node: Node
    ) -> None:
        view_sql = self._sql_identifier(view_name)
        backing_sql = self._sql_identifier(backing_table)
        self._execute_sql(f"CREATE OR REPLACE VIEW {view_sql} AS SELECT * FROM {backing_sql}")

    # ---- Meta hook ----
    def on_node_built(self, node: Node, relation: str, fingerprint: str) -> None:
        """After successful materialization, upsert _ff_meta (best-effort)."""
        ensure_meta_table(self)
        upsert_meta(self, node.name, relation, fingerprint, "databricks_spark")

    # ── Incremental API ─────────────────────────────────────────
    def exists_relation(self, relation: str) -> bool:
        """Check whether a table/view exists (optionally qualified with database)."""
        return self._format_handler.relation_exists(relation, database=self.database)

    def create_table_as(self, relation: str, select_sql: str) -> None:
        """CREATE TABLE AS with cleaned SELECT body."""
        body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
        df = self._execute_sql(body)
        self._save_df_as_table(relation, df)

    def full_refresh_table(self, relation: str, select_sql: str) -> None:
        """
        Engine-specific full refresh for incremental fallbacks.
        Important: NO 'REPLACE TABLE' SQL, but DataFrame path + saveAsTable instead.
        """
        body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
        # Delegate to format handler via _save_df_as_table for managed, or storage for unmanaged
        df = self._execute_sql(body)
        self._save_df_as_table(relation, df)

    def incremental_insert(self, relation: str, select_sql: str) -> None:
        """INSERT INTO with cleaned SELECT body (format-aware via handler)."""
        body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
        self._format_handler.incremental_insert(relation, body)

    def incremental_merge(self, relation: str, select_sql: str, unique_key: list[str]) -> None:
        body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")

        # First: let the current format handler try to do a native merge.
        # - DeltaFormatHandler -> DeltaTable.merge()
        # - IcebergFormatHandler -> Spark SQL MERGE INTO
        try:
            self._format_handler.incremental_merge(relation, body, unique_key)
            return
        except NotImplementedError:
            # Format handler doesn't support MERGE → fall back to generic Spark strategy.
            pass

        # Fallback for formats without native merge:
        # overwrite = (existing minus keys being updated) UNION (new rows)
        materialized: list[SDF] = []

        def _materialize(df: SDF) -> SDF:
            """
            Ensure the frame is realized independently of the source table so an
            overwrite doesn't conflict with the read path.
            """
            try:
                cp = df.localCheckpoint(eager=True)
                materialized.append(cp)
                return cp
            except Exception:
                cached = df.cache()
                cached.count()
                materialized.append(cached)
                return cached

        try:
            physical = self._physical_identifier(relation)
            existing = _materialize(self.spark.table(physical))
            incoming = _materialize(self.spark.sql(body))

            if unique_key:
                # ensure key columns exist on incoming
                missing = [k for k in unique_key if k not in incoming.columns]
                if missing:
                    raise ModelExecutionError(
                        node_name="__python_incremental__",
                        relation=relation,
                        message=(
                            "incremental_merge fallback: missing key columns on incoming: "
                            f"{missing}"
                        ),
                    )
                key_df = incoming.select(*unique_key).dropDuplicates()
                # left_anti: keep only rows whose keys are NOT in incoming
                kept = existing.join(key_df, on=unique_key, how="left_anti")
                merged = kept.unionByName(incoming, allowMissingColumns=True)
            else:
                # No keys → append & deduplicate
                merged = existing.unionByName(incoming, allowMissingColumns=True).dropDuplicates()

            merged = _materialize(merged)
            # Full overwrite with merged result
            self._save_df_as_table(relation, merged)
        finally:
            for handle in materialized:
                with suppress(Exception):
                    handle.unpersist()

    def alter_table_sync_schema(
        self, relation: str, select_sql: str, *, mode: str = "append_new_columns"
    ) -> None:
        """
        Best-effort additive schema sync:
          - infer select schema via LIMIT 0
          - add missing columns as STRING (safe default)
        """
        if mode not in {"append_new_columns", "sync_all_columns"}:
            return
        # Target schema
        try:
            physical = self._physical_identifier(relation)
            target_df = self.spark.table(physical)
        except Exception:
            return
        existing = {f.name for f in target_df.schema.fields}
        # Output schema from the SELECT
        body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
        probe = self._execute_sql(f"SELECT * FROM ({body}) q LIMIT 0")
        to_add = [f for f in probe.schema.fields if f.name not in existing]
        if not to_add:
            return

        def _spark_sql_type(dt: DataType) -> str:
            """Simple, portable mapping for Spark SQL types."""
            return (
                getattr(dt, "simpleString", lambda: "string")().upper()
                if hasattr(dt, "simpleString")
                else "STRING"
            )

        cols_sql = ", ".join([f"`{f.name}` {_spark_sql_type(f.dataType)}" for f in to_add])
        table_sql = self._sql_identifier(relation)
        self._execute_sql(f"ALTER TABLE {table_sql} ADD COLUMNS ({cols_sql})")

    # ── Snapshot API ─────────────────────────────────────────────────────

    def run_snapshot_sql(self, node: Node, env: Environment) -> None:
        """
        Snapshot materialization for Spark/Databricks.
        """
        F = get_spark_functions()

        meta = self._validate_snapshot_node(node)
        cfg = resolve_snapshot_config(node, meta)

        strategy = cfg.strategy
        unique_key = cfg.unique_key
        updated_at = cfg.updated_at
        check_cols = cfg.check_cols

        body, rel_name, physical = self._snapshot_sql_body(node, env)

        vf = BaseExecutor.SNAPSHOT_VALID_FROM_COL
        vt = BaseExecutor.SNAPSHOT_VALID_TO_COL
        is_cur = BaseExecutor.SNAPSHOT_IS_CURRENT_COL
        hash_col = BaseExecutor.SNAPSHOT_HASH_COL
        upd_meta = BaseExecutor.SNAPSHOT_UPDATED_AT_COL

        if not self.exists_relation(rel_name):
            self._snapshot_first_run(
                node=node,
                rel_name=rel_name,
                body=body,
                strategy=strategy,
                updated_at=updated_at,
                check_cols=check_cols,
                F=F,
                vf=vf,
                vt=vt,
                is_cur=is_cur,
                hash_col=hash_col,
                upd_meta=upd_meta,
            )
            return

        self._snapshot_incremental_run(
            node=node,
            body=body,
            rel_name=rel_name,
            physical=physical,
            strategy=strategy,
            unique_key=unique_key,
            updated_at=updated_at,
            check_cols=check_cols,
            F=F,
            vf=vf,
            vt=vt,
            is_cur=is_cur,
            hash_col=hash_col,
            upd_meta=upd_meta,
        )

    def _validate_snapshot_node(self, node: Node) -> dict[str, Any]:
        if node.kind != "sql":
            raise TypeError(
                f"Snapshot materialization is only supported for SQL models, "
                f"got kind={node.kind!r} for {node.name}."
            )

        meta = getattr(node, "meta", {}) or {}
        if not self._meta_is_snapshot(meta):
            raise ValueError(f"Node {node.name} is not configured with materialized='snapshot'.")
        return meta

    def _snapshot_sql_body(
        self,
        node: Node,
        env: Environment,
    ) -> tuple[str, str, str]:
        sql_rendered = self.render_sql(
            node,
            env,
            ref_resolver=lambda name: self._resolve_ref(name, env),
            source_resolver=self._resolve_source,
        )
        sql_clean = self._strip_leading_config(sql_rendered).strip()
        body = self._selectable_body(sql_clean).rstrip(" ;\n\t")

        rel_name = relation_for(node.name)
        physical = self._physical_identifier(rel_name)
        return body, rel_name, physical

    def _snapshot_first_run(
        self,
        *,
        node: Node,
        rel_name: str,
        body: str,
        strategy: str,
        updated_at: str | None,
        check_cols: list[str],
        F: Any,
        vf: str,
        vt: str,
        is_cur: str,
        hash_col: str,
        upd_meta: str,
    ) -> None:
        src_df = self._execute_sql(body)

        echo_debug(f"[snapshot] first run for {rel_name} (strategy={strategy})")

        if strategy == "timestamp":
            assert updated_at is not None, (
                "timestamp snapshots require a non-null updated_at column"
            )
            df_snap = (
                src_df.withColumn(upd_meta, F.col(updated_at))
                .withColumn(vf, F.col(updated_at))
                .withColumn(vt, F.lit(None).cast("timestamp"))
                .withColumn(is_cur, F.lit(True))
                .withColumn(hash_col, F.lit(None).cast("string"))
            )
        else:
            cols_expr = [F.coalesce(F.col(c).cast("string"), F.lit("")) for c in check_cols]
            concat_expr = F.concat_ws("||", *cols_expr)
            hash_expr = F.md5(concat_expr).cast("string")
            upd_expr = F.col(updated_at) if updated_at else F.current_timestamp()

            df_snap = (
                src_df.withColumn(upd_meta, upd_expr)
                .withColumn(vf, F.current_timestamp())
                .withColumn(vt, F.lit(None).cast("timestamp"))
                .withColumn(is_cur, F.lit(True))
                .withColumn(hash_col, hash_expr)
            )

        storage_meta = self._storage_meta(node, rel_name)
        self._save_df_as_table(rel_name, df_snap, storage=storage_meta)

    def _snapshot_incremental_run(
        self,
        *,
        node: Node,
        body: str,
        rel_name: str,
        physical: str,
        strategy: str,
        unique_key: list[str],
        updated_at: str | None,
        check_cols: list[str],
        F: Any,
        vf: str,
        vt: str,
        is_cur: str,
        hash_col: str,
        upd_meta: str,
    ) -> None:
        echo_debug(f"[snapshot] incremental run for {rel_name} (strategy={strategy})")

        existing = self.spark.table(physical)
        src_df = self._execute_sql(body)

        missing_keys_src = [k for k in unique_key if k not in src_df.columns]
        missing_keys_snap = [k for k in unique_key if k not in existing.columns]
        if missing_keys_src or missing_keys_snap:
            raise ValueError(
                f"{node.path}: snapshot unique_key columns must exist on both source and "
                f"snapshot table. Missing on source={missing_keys_src}, "
                f"on snapshot={missing_keys_snap}."
            )

        if strategy == "check":
            cols_expr = [F.coalesce(F.col(c).cast("string"), F.lit("")) for c in check_cols]
            concat_expr = F.concat_ws("||", *cols_expr)
            src_df = src_df.withColumn("__ff_new_hash", F.md5(concat_expr).cast("string"))

        current_df = existing.filter(F.col(is_cur) == True)  # noqa: E712

        s_alias = src_df.alias("s")
        t_alias = current_df.alias("t")
        joined = s_alias.join(t_alias, on=unique_key, how="left")

        if strategy == "timestamp":
            assert updated_at is not None, (
                "timestamp snapshots require a non-null updated_at column"
            )
            s_upd = F.col(f"s.{updated_at}")
            t_upd = F.col(f"t.{upd_meta}")
            cond_new = t_upd.isNull()
            cond_changed = t_upd.isNotNull() & (s_upd > t_upd)
            changed_or_new = cond_new | cond_changed
        else:
            s_hash = F.col("s.__ff_new_hash")
            t_hash = F.col(f"t.{hash_col}")
            cond_new = t_hash.isNull()
            cond_changed = t_hash.isNotNull() & (s_hash != F.coalesce(t_hash, F.lit("")))
            changed_or_new = cond_new | cond_changed

        changed_keys = (
            joined.filter(changed_or_new)
            .select(*[F.col(f"s.{k}").alias(k) for k in unique_key])
            .dropDuplicates()
        )

        prev_noncurrent = existing.filter(F.col(is_cur) == False)  # noqa: E712
        preserved_current = current_df.join(changed_keys, on=unique_key, how="left_anti")

        closed_prev = (
            current_df.join(changed_keys, on=unique_key, how="inner")
            .withColumn(vt, F.current_timestamp())
            .withColumn(is_cur, F.lit(False))
        )

        new_src = src_df.join(changed_keys, on=unique_key, how="inner")
        if strategy == "timestamp":
            assert updated_at is not None, (
                "timestamp snapshots require a non-null updated_at column"
            )
            new_versions = (
                new_src.withColumn(upd_meta, F.col(updated_at))
                .withColumn(vf, F.col(updated_at))
                .withColumn(vt, F.lit(None).cast("timestamp"))
                .withColumn(is_cur, F.lit(True))
                .withColumn(hash_col, F.lit(None).cast("string"))
            )
        else:
            upd_expr = F.col(updated_at) if updated_at else F.current_timestamp()
            new_versions = (
                new_src.withColumn(upd_meta, upd_expr)
                .withColumn(vf, F.current_timestamp())
                .withColumn(vt, F.lit(None).cast("timestamp"))
                .withColumn(is_cur, F.lit(True))
                .withColumn(hash_col, F.col("__ff_new_hash"))
            )

        parts = [prev_noncurrent, preserved_current, closed_prev, new_versions]
        snapshot_df = reduce(lambda a, b: a.unionByName(b, allowMissingColumns=True), parts)
        if "__ff_new_hash" in snapshot_df.columns:
            snapshot_df = snapshot_df.drop("__ff_new_hash")

        # Break lineage so Spark doesn't see this as "read from and overwrite the same table"
        try:
            snapshot_df = snapshot_df.localCheckpoint(eager=True)
        except Exception:
            snapshot_df = snapshot_df.cache()
            snapshot_df.count()

        storage_meta = self._storage_meta(node, rel_name)
        self._save_df_as_table(rel_name, snapshot_df, storage=storage_meta)

    def snapshot_prune(
        self,
        relation: str,
        unique_key: list[str],
        keep_last: int,
        *,
        dry_run: bool = False,
    ) -> None:
        """
        Delete older snapshot versions while keeping the most recent `keep_last`
        rows per business key (including the current row), implemented as a
        DataFrame overwrite (no in-place DELETE).
        """
        if keep_last <= 0:
            return

        Window = get_spark_window()
        F = get_spark_functions()

        if not unique_key:
            return

        vf = BaseExecutor.SNAPSHOT_VALID_FROM_COL

        try:
            physical = self._physical_identifier(relation)
            df = self.spark.table(physical)
        except Exception:
            return

        w = Window.partitionBy(*[F.col(k) for k in unique_key]).orderBy(F.col(vf).desc())
        ranked = df.withColumn("__ff_rn", F.row_number().over(w))

        if dry_run:
            cnt = ranked.filter(F.col("__ff_rn") > int(keep_last)).count()

            echo(
                f"[DRY-RUN] snapshot_prune({relation}): would delete {cnt} row(s) "
                f"(keep_last={keep_last})"
            )
            return

        pruned = ranked.filter(F.col("__ff_rn") <= int(keep_last)).drop("__ff_rn")

        # Materialize before overwrite to avoid Spark's
        # [UNSUPPORTED_OVERWRITE.TABLE] "target that is also being read from".
        materialized: list[SDF] = []

        def _materialize(df: SDF) -> SDF:
            try:
                cp = df.localCheckpoint(eager=True)
                materialized.append(cp)
                return cp
            except Exception:
                cached = df.cache()
                cached.count()
                materialized.append(cached)
                return cached

        try:
            out = _materialize(pruned)
            self._save_df_as_table(relation, out)
        finally:
            for handle in materialized:
                with suppress(Exception):
                    handle.unpersist()

    def execute_hook_sql(self, sql: str) -> None:
        """
        Entry point for hook SQL.

        Accepts a string that may contain multiple ';'-separated statements.
        `_RunEngine._execute_hook_sql` has already normalized away semicolons
        in full-line comments, so naive splitting by ';' is acceptable here.
        """
        for stmt in (part.strip() for part in sql.split(";")):
            if not stmt:
                continue
            # Reuse your existing single-statement executor
            self._execute_sql(stmt)

        # ---- Unit-test helpers -------------------------------------------------

    def utest_load_relation_from_rows(self, relation: str, rows: list[dict]) -> None:
        """
        Load rows into a Spark table for unit tests (replace if exists).

        We go via pandas → Spark so schema is inferred from the Python
        data, then delegate to the same table-writing pipeline as the
        normal engine (_save_df_as_table), so table_format / storage
        options / catalogs are all respected.
        """
        pdf = pd.DataFrame(rows)
        # Spark can infer schema from the pandas DataFrame, even for empty
        # frames (it will just create an empty table with no rows).
        sdf = self.spark.createDataFrame(pdf)
        # Use the same path as normal model materialization so that
        # Delta/Iceberg/etc. are handled consistently.
        self._save_df_as_table(relation, sdf)

    def utest_read_relation(self, relation: str) -> pd.DataFrame:
        """
        Read a relation as a pandas DataFrame for unit-test assertions.

        The utest framework always compares on pandas, so we convert from
        Spark DataFrame here.
        """
        physical = self._physical_identifier(relation)
        sdf = self.spark.table(physical)
        return sdf.toPandas()

    def utest_clean_target(self, relation: str) -> None:
        """
        For unit tests: drop any view or table with this name.

        We:
          - try DROP VIEW IF EXISTS ...
          - try DROP TABLE IF EXISTS ...
        and ignore type-mismatch errors, so it doesn't matter whether a
        table or a view currently exists under that name.
        """
        ident = self._sql_identifier(relation)

        # Drop view first; ignore errors if it's actually a table or missing.
        with suppress(Exception):
            self._execute_sql(f"DROP VIEW IF EXISTS {ident}")

        # Then drop table; ignore errors if it's actually a view or missing.
        with suppress(Exception):
            self._execute_sql(f"DROP TABLE IF EXISTS {ident}")

on_node_built

on_node_built(node, relation, fingerprint)

After successful materialization, upsert _ff_meta (best-effort).

Source code in src/fastflowtransform/executors/databricks_spark.py
786
787
788
789
def on_node_built(self, node: Node, relation: str, fingerprint: str) -> None:
    """After successful materialization, upsert _ff_meta (best-effort)."""
    ensure_meta_table(self)
    upsert_meta(self, node.name, relation, fingerprint, "databricks_spark")

exists_relation

exists_relation(relation)

Check whether a table/view exists (optionally qualified with database).

Source code in src/fastflowtransform/executors/databricks_spark.py
792
793
794
def exists_relation(self, relation: str) -> bool:
    """Check whether a table/view exists (optionally qualified with database)."""
    return self._format_handler.relation_exists(relation, database=self.database)

create_table_as

create_table_as(relation, select_sql)

CREATE TABLE AS with cleaned SELECT body.

Source code in src/fastflowtransform/executors/databricks_spark.py
796
797
798
799
800
def create_table_as(self, relation: str, select_sql: str) -> None:
    """CREATE TABLE AS with cleaned SELECT body."""
    body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
    df = self._execute_sql(body)
    self._save_df_as_table(relation, df)

full_refresh_table

full_refresh_table(relation, select_sql)

Engine-specific full refresh for incremental fallbacks. Important: NO 'REPLACE TABLE' SQL, but DataFrame path + saveAsTable instead.

Source code in src/fastflowtransform/executors/databricks_spark.py
802
803
804
805
806
807
808
809
810
def full_refresh_table(self, relation: str, select_sql: str) -> None:
    """
    Engine-specific full refresh for incremental fallbacks.
    Important: NO 'REPLACE TABLE' SQL, but DataFrame path + saveAsTable instead.
    """
    body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
    # Delegate to format handler via _save_df_as_table for managed, or storage for unmanaged
    df = self._execute_sql(body)
    self._save_df_as_table(relation, df)

incremental_insert

incremental_insert(relation, select_sql)

INSERT INTO with cleaned SELECT body (format-aware via handler).

Source code in src/fastflowtransform/executors/databricks_spark.py
812
813
814
815
def incremental_insert(self, relation: str, select_sql: str) -> None:
    """INSERT INTO with cleaned SELECT body (format-aware via handler)."""
    body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
    self._format_handler.incremental_insert(relation, body)

alter_table_sync_schema

alter_table_sync_schema(relation, select_sql, *, mode='append_new_columns')
Best-effort additive schema sync
  • infer select schema via LIMIT 0
  • add missing columns as STRING (safe default)
Source code in src/fastflowtransform/executors/databricks_spark.py
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
def alter_table_sync_schema(
    self, relation: str, select_sql: str, *, mode: str = "append_new_columns"
) -> None:
    """
    Best-effort additive schema sync:
      - infer select schema via LIMIT 0
      - add missing columns as STRING (safe default)
    """
    if mode not in {"append_new_columns", "sync_all_columns"}:
        return
    # Target schema
    try:
        physical = self._physical_identifier(relation)
        target_df = self.spark.table(physical)
    except Exception:
        return
    existing = {f.name for f in target_df.schema.fields}
    # Output schema from the SELECT
    body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
    probe = self._execute_sql(f"SELECT * FROM ({body}) q LIMIT 0")
    to_add = [f for f in probe.schema.fields if f.name not in existing]
    if not to_add:
        return

    def _spark_sql_type(dt: DataType) -> str:
        """Simple, portable mapping for Spark SQL types."""
        return (
            getattr(dt, "simpleString", lambda: "string")().upper()
            if hasattr(dt, "simpleString")
            else "STRING"
        )

    cols_sql = ", ".join([f"`{f.name}` {_spark_sql_type(f.dataType)}" for f in to_add])
    table_sql = self._sql_identifier(relation)
    self._execute_sql(f"ALTER TABLE {table_sql} ADD COLUMNS ({cols_sql})")

run_snapshot_sql

run_snapshot_sql(node, env)

Snapshot materialization for Spark/Databricks.

Source code in src/fastflowtransform/executors/databricks_spark.py
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
def run_snapshot_sql(self, node: Node, env: Environment) -> None:
    """
    Snapshot materialization for Spark/Databricks.
    """
    F = get_spark_functions()

    meta = self._validate_snapshot_node(node)
    cfg = resolve_snapshot_config(node, meta)

    strategy = cfg.strategy
    unique_key = cfg.unique_key
    updated_at = cfg.updated_at
    check_cols = cfg.check_cols

    body, rel_name, physical = self._snapshot_sql_body(node, env)

    vf = BaseExecutor.SNAPSHOT_VALID_FROM_COL
    vt = BaseExecutor.SNAPSHOT_VALID_TO_COL
    is_cur = BaseExecutor.SNAPSHOT_IS_CURRENT_COL
    hash_col = BaseExecutor.SNAPSHOT_HASH_COL
    upd_meta = BaseExecutor.SNAPSHOT_UPDATED_AT_COL

    if not self.exists_relation(rel_name):
        self._snapshot_first_run(
            node=node,
            rel_name=rel_name,
            body=body,
            strategy=strategy,
            updated_at=updated_at,
            check_cols=check_cols,
            F=F,
            vf=vf,
            vt=vt,
            is_cur=is_cur,
            hash_col=hash_col,
            upd_meta=upd_meta,
        )
        return

    self._snapshot_incremental_run(
        node=node,
        body=body,
        rel_name=rel_name,
        physical=physical,
        strategy=strategy,
        unique_key=unique_key,
        updated_at=updated_at,
        check_cols=check_cols,
        F=F,
        vf=vf,
        vt=vt,
        is_cur=is_cur,
        hash_col=hash_col,
        upd_meta=upd_meta,
    )

snapshot_prune

snapshot_prune(relation, unique_key, keep_last, *, dry_run=False)

Delete older snapshot versions while keeping the most recent keep_last rows per business key (including the current row), implemented as a DataFrame overwrite (no in-place DELETE).

Source code in src/fastflowtransform/executors/databricks_spark.py
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
def snapshot_prune(
    self,
    relation: str,
    unique_key: list[str],
    keep_last: int,
    *,
    dry_run: bool = False,
) -> None:
    """
    Delete older snapshot versions while keeping the most recent `keep_last`
    rows per business key (including the current row), implemented as a
    DataFrame overwrite (no in-place DELETE).
    """
    if keep_last <= 0:
        return

    Window = get_spark_window()
    F = get_spark_functions()

    if not unique_key:
        return

    vf = BaseExecutor.SNAPSHOT_VALID_FROM_COL

    try:
        physical = self._physical_identifier(relation)
        df = self.spark.table(physical)
    except Exception:
        return

    w = Window.partitionBy(*[F.col(k) for k in unique_key]).orderBy(F.col(vf).desc())
    ranked = df.withColumn("__ff_rn", F.row_number().over(w))

    if dry_run:
        cnt = ranked.filter(F.col("__ff_rn") > int(keep_last)).count()

        echo(
            f"[DRY-RUN] snapshot_prune({relation}): would delete {cnt} row(s) "
            f"(keep_last={keep_last})"
        )
        return

    pruned = ranked.filter(F.col("__ff_rn") <= int(keep_last)).drop("__ff_rn")

    # Materialize before overwrite to avoid Spark's
    # [UNSUPPORTED_OVERWRITE.TABLE] "target that is also being read from".
    materialized: list[SDF] = []

    def _materialize(df: SDF) -> SDF:
        try:
            cp = df.localCheckpoint(eager=True)
            materialized.append(cp)
            return cp
        except Exception:
            cached = df.cache()
            cached.count()
            materialized.append(cached)
            return cached

    try:
        out = _materialize(pruned)
        self._save_df_as_table(relation, out)
    finally:
        for handle in materialized:
            with suppress(Exception):
                handle.unpersist()

execute_hook_sql

execute_hook_sql(sql)

Entry point for hook SQL.

Accepts a string that may contain multiple ';'-separated statements. _RunEngine._execute_hook_sql has already normalized away semicolons in full-line comments, so naive splitting by ';' is acceptable here.

Source code in src/fastflowtransform/executors/databricks_spark.py
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
def execute_hook_sql(self, sql: str) -> None:
    """
    Entry point for hook SQL.

    Accepts a string that may contain multiple ';'-separated statements.
    `_RunEngine._execute_hook_sql` has already normalized away semicolons
    in full-line comments, so naive splitting by ';' is acceptable here.
    """
    for stmt in (part.strip() for part in sql.split(";")):
        if not stmt:
            continue
        # Reuse your existing single-statement executor
        self._execute_sql(stmt)

utest_load_relation_from_rows

utest_load_relation_from_rows(relation, rows)

Load rows into a Spark table for unit tests (replace if exists).

We go via pandas → Spark so schema is inferred from the Python data, then delegate to the same table-writing pipeline as the normal engine (_save_df_as_table), so table_format / storage options / catalogs are all respected.

Source code in src/fastflowtransform/executors/databricks_spark.py
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
def utest_load_relation_from_rows(self, relation: str, rows: list[dict]) -> None:
    """
    Load rows into a Spark table for unit tests (replace if exists).

    We go via pandas → Spark so schema is inferred from the Python
    data, then delegate to the same table-writing pipeline as the
    normal engine (_save_df_as_table), so table_format / storage
    options / catalogs are all respected.
    """
    pdf = pd.DataFrame(rows)
    # Spark can infer schema from the pandas DataFrame, even for empty
    # frames (it will just create an empty table with no rows).
    sdf = self.spark.createDataFrame(pdf)
    # Use the same path as normal model materialization so that
    # Delta/Iceberg/etc. are handled consistently.
    self._save_df_as_table(relation, sdf)

utest_read_relation

utest_read_relation(relation)

Read a relation as a pandas DataFrame for unit-test assertions.

The utest framework always compares on pandas, so we convert from Spark DataFrame here.

Source code in src/fastflowtransform/executors/databricks_spark.py
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
def utest_read_relation(self, relation: str) -> pd.DataFrame:
    """
    Read a relation as a pandas DataFrame for unit-test assertions.

    The utest framework always compares on pandas, so we convert from
    Spark DataFrame here.
    """
    physical = self._physical_identifier(relation)
    sdf = self.spark.table(physical)
    return sdf.toPandas()

utest_clean_target

utest_clean_target(relation)

For unit tests: drop any view or table with this name.

We
  • try DROP VIEW IF EXISTS ...
  • try DROP TABLE IF EXISTS ...

and ignore type-mismatch errors, so it doesn't matter whether a table or a view currently exists under that name.

Source code in src/fastflowtransform/executors/databricks_spark.py
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
def utest_clean_target(self, relation: str) -> None:
    """
    For unit tests: drop any view or table with this name.

    We:
      - try DROP VIEW IF EXISTS ...
      - try DROP TABLE IF EXISTS ...
    and ignore type-mismatch errors, so it doesn't matter whether a
    table or a view currently exists under that name.
    """
    ident = self._sql_identifier(relation)

    # Drop view first; ignore errors if it's actually a table or missing.
    with suppress(Exception):
        self._execute_sql(f"DROP VIEW IF EXISTS {ident}")

    # Then drop table; ignore errors if it's actually a view or missing.
    with suppress(Exception):
        self._execute_sql(f"DROP TABLE IF EXISTS {ident}")

run_sql

run_sql(node, env)
Orchestrate SQL models

1) Render Jinja (ref/source/this) and strip leading {{ config(...) }}. 2) If the SQL is full DDL (CREATE …), execute it verbatim (passthrough). 3) Otherwise, normalize to CREATE OR REPLACE {TABLE|VIEW} AS . The body is CTE-aware (keeps WITH … SELECT … intact).

On failure, raise ModelExecutionError with a helpful snippet.

Source code in src/fastflowtransform/executors/base.py
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
def run_sql(self, node: Node, env: Environment) -> None:
    """
    Orchestrate SQL models:
      1) Render Jinja (ref/source/this) and strip leading {{ config(...) }}.
      2) If the SQL is full DDL (CREATE …), execute it verbatim (passthrough).
      3) Otherwise, normalize to CREATE OR REPLACE {TABLE|VIEW} AS <body>.
         The body is CTE-aware (keeps WITH … SELECT … intact).
    On failure, raise ModelExecutionError with a helpful snippet.
    """
    meta = getattr(node, "meta", {}) or {}
    if self._meta_is_incremental(meta):
        # Delegates to incremental engine: render, schema sync, merge/insert, etc.
        return _ff_incremental.run_or_dispatch(self, node, env)

    if self._meta_is_snapshot(meta):
        # Snapshots are executed via the dedicated CLI: `fft snapshot run`.
        raise ModelExecutionError(
            node_name=node.name,
            relation=relation_for(node.name),
            message=(
                "Snapshot models cannot be executed via 'fft run'. "
                "Use 'fft snapshot run' instead."
            ),
            sql_snippet="",
        )

    sql_rendered = self.render_sql(
        node,
        env,
        ref_resolver=lambda name: self._resolve_ref(name, env),
        source_resolver=self._resolve_source,
    )
    sql = self._strip_leading_config(sql_rendered).strip()

    materialization = (node.meta or {}).get("materialized", "table")
    if materialization == "ephemeral":
        return

    # 1) Direct DDL passthrough (CREATE [OR REPLACE] {TABLE|VIEW} …)
    if self._looks_like_direct_ddl(sql):
        try:
            self._execute_sql_direct(sql, node)
            return
        except NotImplementedError:
            # Engine doesn't implement direct DDL → fall back to normalized materialization.
            pass
        except Exception as e:
            raise ModelExecutionError(
                node_name=node.name,
                relation=relation_for(node.name),
                message=str(e),
                sql_snippet=sql,
            ) from e

    # 2) Normalized materialization path (CTE-safe body)
    body = self._selectable_body(sql).rstrip(" ;\n\t")
    target_sql = self._format_relation_for_ref(node.name)

    # Centralized SQL preview logging (applies to ALL engines)
    preview = (
        f"=== MATERIALIZE ===\n"
        f"-- model: {node.name}\n"
        f"-- materialized: {materialization}\n"
        f"-- target: {target_sql}\n"
        f"{body}\n"
    )
    echo_debug(preview)

    try:
        self._apply_sql_materialization(node, target_sql, body, materialization)
    except Exception as e:
        preview = f"-- materialized={materialization}\n-- target={target_sql}\n{body}"
        raise ModelExecutionError(
            node_name=node.name,
            relation=relation_for(node.name),
            message=str(e),
            sql_snippet=preview,
        ) from e

configure_query_budget_limit

configure_query_budget_limit(limit)

Inject a configured per-query byte limit (e.g. from budgets.yml).

Source code in src/fastflowtransform/executors/base.py
501
502
503
504
505
506
507
508
509
510
511
512
513
def configure_query_budget_limit(self, limit: int | None) -> None:
    """
    Inject a configured per-query byte limit (e.g. from budgets.yml).
    """
    if limit is None:
        self._ff_configured_query_limit = None
        return
    try:
        iv = int(limit)
    except Exception:
        self._ff_configured_query_limit = None
        return
    self._ff_configured_query_limit = iv if iv > 0 else None

reset_node_stats

reset_node_stats()

Reset per-node statistics buffer.

The run engine calls this before executing a model so that all stats recorded via _record_query_stats(...) belong to that node.

Source code in src/fastflowtransform/executors/base.py
553
554
555
556
557
558
559
560
561
def reset_node_stats(self) -> None:
    """
    Reset per-node statistics buffer.

    The run engine calls this before executing a model so that all
    stats recorded via `_record_query_stats(...)` belong to that node.
    """
    # just clear the buffer; next recording will re-create it
    self._ff_query_stats_buffer = []

get_node_stats

get_node_stats()

Aggregate buffered QueryStats into a simple dict:

{
  "bytes_scanned": <sum>,
  "rows": <sum>,
  "query_duration_ms": <sum>,
}

Called by the run engine after a node finishes.

Source code in src/fastflowtransform/executors/base.py
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
def get_node_stats(self) -> dict[str, int]:
    """
    Aggregate buffered QueryStats into a simple dict:

        {
          "bytes_scanned": <sum>,
          "rows": <sum>,
          "query_duration_ms": <sum>,
        }

    Called by the run engine after a node finishes.
    """
    stats_list = self._drain_query_stats()
    if not stats_list:
        return {}

    total_bytes = 0
    total_rows = 0
    total_duration = 0

    for s in stats_list:
        if s.bytes_processed is not None:
            total_bytes += int(s.bytes_processed)
        if s.rows is not None:
            total_rows += int(s.rows)
        if s.duration_ms is not None:
            total_duration += int(s.duration_ms)

    return {
        "bytes_scanned": total_bytes,
        "rows": total_rows,
        "query_duration_ms": total_duration,
    }

run_python

run_python(node)

Execute the Python model for a given node and materialize its result.

Source code in src/fastflowtransform/executors/base.py
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
def run_python(self, node: Node) -> None:
    """Execute the Python model for a given node and materialize its result."""
    func = REGISTRY.py_funcs[node.name]
    deps = REGISTRY.nodes[node.name].deps or []

    self._reset_http_ctx(node)

    # arg = self._build_python_args(node, deps)
    args, argmap = self._build_python_inputs(node, deps)
    requires = REGISTRY.py_requires.get(node.name, {})
    # if deps:
    #     self._validate_required(node.name, arg, requires)
    if deps:
        # Required-columns check works against the mapping
        self._validate_required(node.name, argmap, requires)

    # out = self._execute_python_func(func, arg, node)
    out = self._execute_python_func(func, args, node)

    target = relation_for(node.name)
    meta = getattr(node, "meta", {}) or {}
    mat = self._resolve_materialization_strategy(meta)

    if mat == "incremental":
        self._materialize_incremental(target, out, node, meta)
    elif mat == "view":
        self._materialize_view(target, out, node)
    else:
        self._materialize_relation(target, out, node)

    self._snapshot_http_ctx(node)