Skip to content

fastflowtransform.executors.bigquery_exec

BigQueryExecutor

Bases: BigQueryIdentifierMixin, BaseExecutor[DataFrame]

Source code in src/fastflowtransform/executors/bigquery_exec.py
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
class BigQueryExecutor(BigQueryIdentifierMixin, BaseExecutor[pd.DataFrame]):
    ENGINE_NAME = "bigquery"
    """
    BigQuery executor (pandas DataFrames).
    ENV/Profiles typically use:
      - FF_BQ_PROJECT
      - FF_BQ_DATASET
      - FF_BQ_LOCATION (optional)
    """

    def __init__(
        self,
        project: str,
        dataset: str,
        location: str | None = None,
        client: Client | None = None,
    ):
        self.project = project
        self.dataset = dataset
        self.location = location
        self.client: Client = client or bigquery.Client(
            project=self.project, location=self.location
        )
        # Testing-API: con.execute(...)
        self.con = BigQueryConnShim(
            self.client, location=self.location, project=self.project, dataset=self.dataset
        )

    # ---------- Helpers ----------
    # ---------- Python (Frames) ----------
    def _read_relation(self, relation: str, node: Node, deps: Iterable[str]) -> pd.DataFrame:
        q = f"SELECT * FROM {self._qualified_identifier(relation)}"
        try:
            job = self.client.query(q, location=self.location)
            return job.result().to_dataframe(create_bqstorage_client=True)
        except NotFound as e:
            # list existing tables to aid debugging
            tables = list(self.client.list_tables(f"{self.project}.{self.dataset}"))
            existing = [t.table_id for t in tables]
            raise RuntimeError(
                f"Dependency table not found: {self.project}.{self.dataset}.{relation}\n"
                f"Deps: {list(deps)}\nExisting in dataset: {existing}\n"
                "Hinweis: Seeds/Upstream-Modelle erzeugt? DATASET korrekt?"
            ) from e

    def _materialize_relation(self, relation: str, df: pd.DataFrame, node: Node) -> None:
        self._ensure_dataset()
        table_id = f"{self.project}.{self.dataset}.{relation}"
        job_config = LoadJobConfig(write_disposition=bigquery.WriteDisposition.WRITE_TRUNCATE)
        # Optionally extend dtype mapping here (NUMERIC/STRING etc.)
        try:
            job = self.client.load_table_from_dataframe(
                df, table_id, job_config=job_config, location=self.location
            )
            job.result()
        except BadRequest as e:
            raise RuntimeError(f"BigQuery write failed: {table_id}\n{e}") from e

    def _create_view_over_table(self, view_name: str, backing_table: str, node: Node) -> None:
        view_id = self._qualified_identifier(view_name)
        back_id = self._qualified_identifier(backing_table)
        self._ensure_dataset()
        job = self.client.query(
            f"CREATE OR REPLACE VIEW {view_id} AS SELECT * FROM {back_id}",
            location=self.location,
        )
        job.result()

    def _frame_name(self) -> str:
        return "pandas"

    # ---- SQL hooks ----
    def _format_relation_for_ref(self, name: str) -> str:
        return self._qualified_identifier(relation_for(name))

    def _format_source_reference(
        self, cfg: dict[str, Any], source_name: str, table_name: str
    ) -> str:
        if cfg.get("location"):
            raise NotImplementedError("BigQuery executor does not support path-based sources.")

        ident = cfg.get("identifier")
        if not ident:
            raise KeyError(f"Source {source_name}.{table_name} missing identifier")

        proj = cfg.get("project") or cfg.get("database") or cfg.get("catalog") or self.project
        dset = cfg.get("dataset") or cfg.get("schema") or self.dataset
        return self._qualified_identifier(ident, project=proj, dataset=dset)

    def _apply_sql_materialization(
        self, node: Node, target_sql: str, select_body: str, materialization: str
    ) -> None:
        self._ensure_dataset()
        try:
            super()._apply_sql_materialization(node, target_sql, select_body, materialization)
        except BadRequest as e:
            raise RuntimeError(
                f"BigQuery SQL failed for {target_sql}:\n{select_body}\n\n{e}"
            ) from e

    def _create_or_replace_view(self, target_sql: str, select_body: str, node: Node) -> None:
        job = self.client.query(
            f"CREATE OR REPLACE VIEW {target_sql} AS {select_body}",
            location=self.location,
        )
        job.result()

    def _create_or_replace_table(self, target_sql: str, select_body: str, node: Node) -> None:
        job = self.client.query(
            f"CREATE OR REPLACE TABLE {target_sql} AS {select_body}",
            location=self.location,
        )
        job.result()

    def _create_or_replace_view_from_table(
        self, view_name: str, backing_table: str, node: Node
    ) -> None:
        view_id = self._qualified_identifier(view_name)
        back_id = self._qualified_identifier(backing_table)
        self._ensure_dataset()
        job = self.client.query(
            f"CREATE OR REPLACE VIEW {view_id} AS SELECT * FROM {back_id}",
            location=self.location,
        )
        job.result()

    def on_node_built(self, node: Node, relation: str, fingerprint: str) -> None:
        """
        Write/update dataset._ff_meta after a successful build.
        """
        try:
            ensure_meta_table(self)
            upsert_meta(self, node.name, relation, fingerprint, "bigquery")
        except Exception:
            pass

    # ── Incremental API (parity with DuckDB/PG) ───────────────────────────
    def exists_relation(self, relation: str) -> bool:
        """
        Check presence in INFORMATION_SCHEMA for tables/views.
        """
        proj = self.project
        dset = self.dataset
        rel = relation
        q = f"""
        SELECT 1
        FROM `{proj}.{dset}.INFORMATION_SCHEMA.TABLES`
        WHERE LOWER(table_name)=LOWER(@rel)
        UNION ALL
        SELECT 1
        FROM `{proj}.{dset}.INFORMATION_SCHEMA.VIEWS`
        WHERE LOWER(table_name)=LOWER(@rel)
        LIMIT 1
        """
        job = self.client.query(
            q,
            job_config=bigquery.QueryJobConfig(
                query_parameters=[bigquery.ScalarQueryParameter("rel", "STRING", rel)]
            ),
            location=self.location,
        )
        return bool(list(job.result()))

    def create_table_as(self, relation: str, select_sql: str) -> None:
        """
        CREATE TABLE AS with cleaned SELECT body (no trailing semicolons).
        """
        self._ensure_dataset()
        body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
        target = self._qualified_identifier(relation, project=self.project, dataset=self.dataset)
        self.client.query(
            f"CREATE TABLE {target} AS {body}",
            location=self.location,
        ).result()

    def incremental_insert(self, relation: str, select_sql: str) -> None:
        """
        INSERT INTO with cleaned SELECT body.
        """
        self._ensure_dataset()
        body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
        target = self._qualified_identifier(relation, project=self.project, dataset=self.dataset)
        self.client.query(
            f"INSERT INTO {target} {body}",
            location=self.location,
        ).result()

    def incremental_merge(self, relation: str, select_sql: str, unique_key: list[str]) -> None:
        """
        Portable fallback without native MERGE:
          - DELETE collisions via WHERE EXISTS against the cleaned SELECT body
          - INSERT new rows from the same body
        """
        self._ensure_dataset()
        body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
        target = self._qualified_identifier(relation, project=self.project, dataset=self.dataset)
        pred = " AND ".join([f"t.{k}=s.{k}" for k in unique_key]) or "FALSE"

        delete_sql = f"""
        DELETE FROM {target} t
        WHERE EXISTS (SELECT 1 FROM ({body}) s WHERE {pred})
        """
        self.client.query(delete_sql, location=self.location).result()

        insert_sql = f"INSERT INTO {target} SELECT * FROM ({body})"
        self.client.query(insert_sql, location=self.location).result()

    def alter_table_sync_schema(
        self, relation: str, select_sql: str, *, mode: str = "append_new_columns"
    ) -> None:
        """
        Best-effort additive schema sync:
          - infer select schema via LIMIT 0 query
          - add missing columns as NULLABLE using inferred BigQuery types
        """
        if mode not in {"append_new_columns", "sync_all_columns"}:
            return
        self._ensure_dataset()

        body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
        # Infer schema using a no-row query (lets BigQuery type the expressions)
        probe = self.client.query(
            f"SELECT * FROM ({body}) WHERE 1=0",
            job_config=bigquery.QueryJobConfig(dry_run=False, use_query_cache=False),
            location=self.location,
        )
        probe.result()
        out_fields = {f.name: f for f in (probe.schema or [])}

        # Existing table schema
        table_ref = f"{self.project}.{self.dataset}.{relation}"
        try:
            tbl = self.client.get_table(table_ref)
        except NotFound:
            return
        existing_cols = {f.name for f in (tbl.schema or [])}

        to_add = [name for name in out_fields if name not in existing_cols]
        if not to_add:
            return
        target = self._qualified_identifier(relation, project=self.project, dataset=self.dataset)
        for col in to_add:
            f = out_fields[col]
            typ = str(f.field_type) if hasattr(f, "field_type") else "STRING"
            self.client.query(
                f"ALTER TABLE {target} ADD COLUMN {col} {typ}",
                location=self.location,
            ).result()

ENGINE_NAME class-attribute instance-attribute

ENGINE_NAME = 'bigquery'

BigQuery executor (pandas DataFrames). ENV/Profiles typically use: - FF_BQ_PROJECT - FF_BQ_DATASET - FF_BQ_LOCATION (optional)

on_node_built

on_node_built(node, relation, fingerprint)

Write/update dataset._ff_meta after a successful build.

Source code in src/fastflowtransform/executors/bigquery_exec.py
146
147
148
149
150
151
152
153
154
def on_node_built(self, node: Node, relation: str, fingerprint: str) -> None:
    """
    Write/update dataset._ff_meta after a successful build.
    """
    try:
        ensure_meta_table(self)
        upsert_meta(self, node.name, relation, fingerprint, "bigquery")
    except Exception:
        pass

exists_relation

exists_relation(relation)

Check presence in INFORMATION_SCHEMA for tables/views.

Source code in src/fastflowtransform/executors/bigquery_exec.py
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
def exists_relation(self, relation: str) -> bool:
    """
    Check presence in INFORMATION_SCHEMA for tables/views.
    """
    proj = self.project
    dset = self.dataset
    rel = relation
    q = f"""
    SELECT 1
    FROM `{proj}.{dset}.INFORMATION_SCHEMA.TABLES`
    WHERE LOWER(table_name)=LOWER(@rel)
    UNION ALL
    SELECT 1
    FROM `{proj}.{dset}.INFORMATION_SCHEMA.VIEWS`
    WHERE LOWER(table_name)=LOWER(@rel)
    LIMIT 1
    """
    job = self.client.query(
        q,
        job_config=bigquery.QueryJobConfig(
            query_parameters=[bigquery.ScalarQueryParameter("rel", "STRING", rel)]
        ),
        location=self.location,
    )
    return bool(list(job.result()))

create_table_as

create_table_as(relation, select_sql)

CREATE TABLE AS with cleaned SELECT body (no trailing semicolons).

Source code in src/fastflowtransform/executors/bigquery_exec.py
183
184
185
186
187
188
189
190
191
192
193
def create_table_as(self, relation: str, select_sql: str) -> None:
    """
    CREATE TABLE AS with cleaned SELECT body (no trailing semicolons).
    """
    self._ensure_dataset()
    body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
    target = self._qualified_identifier(relation, project=self.project, dataset=self.dataset)
    self.client.query(
        f"CREATE TABLE {target} AS {body}",
        location=self.location,
    ).result()

incremental_insert

incremental_insert(relation, select_sql)

INSERT INTO with cleaned SELECT body.

Source code in src/fastflowtransform/executors/bigquery_exec.py
195
196
197
198
199
200
201
202
203
204
205
def incremental_insert(self, relation: str, select_sql: str) -> None:
    """
    INSERT INTO with cleaned SELECT body.
    """
    self._ensure_dataset()
    body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
    target = self._qualified_identifier(relation, project=self.project, dataset=self.dataset)
    self.client.query(
        f"INSERT INTO {target} {body}",
        location=self.location,
    ).result()

incremental_merge

incremental_merge(relation, select_sql, unique_key)
Portable fallback without native MERGE
  • DELETE collisions via WHERE EXISTS against the cleaned SELECT body
  • INSERT new rows from the same body
Source code in src/fastflowtransform/executors/bigquery_exec.py
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
def incremental_merge(self, relation: str, select_sql: str, unique_key: list[str]) -> None:
    """
    Portable fallback without native MERGE:
      - DELETE collisions via WHERE EXISTS against the cleaned SELECT body
      - INSERT new rows from the same body
    """
    self._ensure_dataset()
    body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
    target = self._qualified_identifier(relation, project=self.project, dataset=self.dataset)
    pred = " AND ".join([f"t.{k}=s.{k}" for k in unique_key]) or "FALSE"

    delete_sql = f"""
    DELETE FROM {target} t
    WHERE EXISTS (SELECT 1 FROM ({body}) s WHERE {pred})
    """
    self.client.query(delete_sql, location=self.location).result()

    insert_sql = f"INSERT INTO {target} SELECT * FROM ({body})"
    self.client.query(insert_sql, location=self.location).result()

alter_table_sync_schema

alter_table_sync_schema(relation, select_sql, *, mode='append_new_columns')
Best-effort additive schema sync
  • infer select schema via LIMIT 0 query
  • add missing columns as NULLABLE using inferred BigQuery types
Source code in src/fastflowtransform/executors/bigquery_exec.py
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
def alter_table_sync_schema(
    self, relation: str, select_sql: str, *, mode: str = "append_new_columns"
) -> None:
    """
    Best-effort additive schema sync:
      - infer select schema via LIMIT 0 query
      - add missing columns as NULLABLE using inferred BigQuery types
    """
    if mode not in {"append_new_columns", "sync_all_columns"}:
        return
    self._ensure_dataset()

    body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
    # Infer schema using a no-row query (lets BigQuery type the expressions)
    probe = self.client.query(
        f"SELECT * FROM ({body}) WHERE 1=0",
        job_config=bigquery.QueryJobConfig(dry_run=False, use_query_cache=False),
        location=self.location,
    )
    probe.result()
    out_fields = {f.name: f for f in (probe.schema or [])}

    # Existing table schema
    table_ref = f"{self.project}.{self.dataset}.{relation}"
    try:
        tbl = self.client.get_table(table_ref)
    except NotFound:
        return
    existing_cols = {f.name for f in (tbl.schema or [])}

    to_add = [name for name in out_fields if name not in existing_cols]
    if not to_add:
        return
    target = self._qualified_identifier(relation, project=self.project, dataset=self.dataset)
    for col in to_add:
        f = out_fields[col]
        typ = str(f.field_type) if hasattr(f, "field_type") else "STRING"
        self.client.query(
            f"ALTER TABLE {target} ADD COLUMN {col} {typ}",
            location=self.location,
        ).result()

run_sql

run_sql(node, env)
Orchestrate SQL models

1) Render Jinja (ref/source/this) and strip leading {{ config(...) }}. 2) If the SQL is full DDL (CREATE …), execute it verbatim (passthrough). 3) Otherwise, normalize to CREATE OR REPLACE {TABLE|VIEW} AS . The body is CTE-aware (keeps WITH … SELECT … intact).

On failure, raise ModelExecutionError with a helpful snippet.

Source code in src/fastflowtransform/executors/base.py
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
def run_sql(self, node: Node, env: Environment) -> None:
    """
    Orchestrate SQL models:
      1) Render Jinja (ref/source/this) and strip leading {{ config(...) }}.
      2) If the SQL is full DDL (CREATE …), execute it verbatim (passthrough).
      3) Otherwise, normalize to CREATE OR REPLACE {TABLE|VIEW} AS <body>.
         The body is CTE-aware (keeps WITH … SELECT … intact).
    On failure, raise ModelExecutionError with a helpful snippet.
    """
    sql_rendered = self.render_sql(
        node,
        env,
        ref_resolver=lambda name: self._resolve_ref(name, env),
        source_resolver=self._resolve_source,
    )
    sql = self._strip_leading_config(sql_rendered).strip()

    materialization = (node.meta or {}).get("materialized", "table")
    if materialization == "ephemeral":
        return

    # 1) Direct DDL passthrough (CREATE [OR REPLACE] {TABLE|VIEW} …)
    if self._looks_like_direct_ddl(sql):
        try:
            self._execute_sql_direct(sql, node)
            return
        except NotImplementedError:
            # Engine doesn't implement direct DDL → fall back to normalized materialization.
            pass
        except Exception as e:
            raise ModelExecutionError(
                node_name=node.name,
                relation=relation_for(node.name),
                message=str(e),
                sql_snippet=sql,
            ) from e

    # 2) Normalized materialization path (CTE-safe body)
    body = self._selectable_body(sql).rstrip(" ;\n\t")
    target_sql = self._format_relation_for_ref(node.name)

    # Centralized SQL preview logging (applies to ALL engines)
    preview = (
        f"=== MATERIALIZE ===\n"
        f"-- model: {node.name}\n"
        f"-- materialized: {materialization}\n"
        f"-- target: {target_sql}\n"
        f"{body}\n"
    )
    echo_debug(preview)

    try:
        self._apply_sql_materialization(node, target_sql, body, materialization)
    except Exception as e:
        preview = f"-- materialized={materialization}\n-- target={target_sql}\n{body}"
        raise ModelExecutionError(
            node_name=node.name,
            relation=relation_for(node.name),
            message=str(e),
            sql_snippet=preview,
        ) from e