24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302 | class BigQueryBFExecutor(BigQueryIdentifierMixin, BaseExecutor[BFDataFrame]):
ENGINE_NAME = "bigquery_batch"
def __init__(self, project: str, dataset: str, location: str | None = None):
self.project = project
self.dataset = dataset
self.location = location
self.client = bigquery.Client(project=project, location=location)
try:
ctx = BigQueryOptions(
project=project,
# default_dataset=dataset,
location=location,
)
self.session = bigframes.Session(context=ctx)
except Exception:
# Fallback: session without explicit context (ADC/default project),
# though you typically use fully qualified table IDs anyway.
self.session = bigframes.Session()
self.con = BigQueryConnShim(self.client, location=self.location)
def _read_relation(self, relation: str, node: Node, deps: Iterable[str]) -> BFDataFrame:
table_id = f"{self.project}.{self.dataset}.{relation}"
try:
return self.session.read_gbq(table_id)
except NotFound as e:
existing = [
t.table_id for t in self.client.list_tables(f"{self.project}.{self.dataset}")
]
raise RuntimeError(
f"Dependency table not found: {table_id}\n"
f"Deps: {list(deps)}\nExisting in dataset: {existing}\n"
"Hinweis: Seeds/Upstream-Modelle erzeugt? DATASET korrekt?"
) from e
def _materialize_relation(self, relation: str, df: BFDataFrame, node: Node) -> None:
table_id = f"{self.project}.{self.dataset}.{relation}"
to_gbq = getattr(df, "to_gbq", None)
if callable(to_gbq):
to_gbq(table_id, if_exists="replace")
return
# Fallback only when it is truly a method (not a column name!)
mat = getattr(df, "materialize", None)
if callable(mat):
mat(table=table_id, mode="overwrite")
return
raise RuntimeError(
"BigQuery DataFrames: Ergebnis nicht materialisierbar. "
"Erwarte df.to_gbq(...) oder df.materialize(...)."
)
# ---- Meta hook ----
def on_node_built(self, node: Node, relation: str, fingerprint: str) -> None:
"""Mirror DuckDB/PG: write/update _ff_meta after successful build."""
try:
ensure_meta_table(self)
upsert_meta(self, node.name, relation, fingerprint, "bigquery")
except Exception:
# Best-effort: meta must not break the run
pass
def _validate_required(
self, node_name: str, inputs: Any, requires: dict[str, set[str]]
) -> None:
if not requires:
return
def cols(bf_df: BFDataFrame) -> set[str]:
if hasattr(bf_df, "columns"):
return set(map(str, list(bf_df.columns)))
if hasattr(bf_df, "schema") and hasattr(bf_df.schema, "names"):
return set(bf_df.schema.names)
return set()
errs: list[str] = []
if self._is_frame(inputs):
need = next(iter(requires.values()), set())
miss = need - cols(inputs)
if miss:
errs.append(f"- missing columns: {sorted(miss)}")
else:
for rel, need in requires.items():
if rel not in inputs:
errs.append(f"- missing dependency key '{rel}'")
continue
miss = need - cols(inputs[rel])
if miss:
errs.append(f"- [{rel}] missing: {sorted(miss)}")
if errs:
raise ValueError(
f"Required columns check failed for BigQuery DataFrames model '{node_name}'.\n"
+ "\n".join(errs)
)
def _columns_of(self, frame: BFDataFrame) -> list[str]:
if hasattr(frame, "columns"):
return [str(c) for c in list(frame.columns)]
if hasattr(frame, "schema") and hasattr(frame.schema, "names"):
return list(frame.schema.names)
return []
def _is_frame(self, obj: Any) -> bool:
return bool(obj) and (
callable(getattr(obj, "to_gbq", None))
or callable(getattr(obj, "materialize", None))
or hasattr(obj, "columns")
)
def _frame_name(self) -> str:
return "BigQuery DataFrame (BigFrames)"
# ---- Helpers ----
# ---- SQL hooks ----
def _format_relation_for_ref(self, name: str) -> str:
return self._qualified_identifier(relation_for(name))
def _format_source_reference(
self, cfg: dict[str, Any], source_name: str, table_name: str
) -> str:
if cfg.get("location"):
raise NotImplementedError("BigQuery executor does not support path-based sources.")
ident = cfg.get("identifier")
if not ident:
raise KeyError(f"Source {source_name}.{table_name} missing identifier")
proj = cfg.get("project") or cfg.get("database") or cfg.get("catalog") or self.project
dset = cfg.get("dataset") or cfg.get("schema") or self.dataset
return self._qualified_identifier(ident, project=proj, dataset=dset)
def _apply_sql_materialization(
self, node: Node, target_sql: str, select_body: str, materialization: str
) -> None:
self._ensure_dataset()
try:
super()._apply_sql_materialization(node, target_sql, select_body, materialization)
except BadRequest as e:
raise RuntimeError(
f"BigQuery SQL failed for {target_sql}:\n{select_body}\n\n{e}"
) from e
def _create_or_replace_view(self, target_sql: str, select_body: str, node: Node) -> None:
self.client.query(
f"CREATE OR REPLACE VIEW {target_sql} AS {select_body}",
location=self.location,
).result()
def _create_or_replace_table(self, target_sql: str, select_body: str, node: Node) -> None:
self.client.query(
f"CREATE OR REPLACE TABLE {target_sql} AS {select_body}",
location=self.location,
).result()
def _create_or_replace_view_from_table(
self, view_name: str, backing_table: str, node: Node
) -> None:
view_id = self._qualified_identifier(view_name)
back_id = self._qualified_identifier(backing_table)
self.client.query(
f"CREATE OR REPLACE VIEW {view_id} AS SELECT * FROM {back_id}",
location=self.location,
).result()
# ── Incremental API (feature parity with DuckDB/PG) ──────────────────
def exists_relation(self, relation: str) -> bool:
"""Check presence in TABLES or VIEWS information schema."""
proj = self.project
dset = self.dataset
rel = relation
q = f"""
SELECT 1
FROM `{proj}.{dset}.INFORMATION_SCHEMA.TABLES`
WHERE LOWER(table_name)=LOWER(@rel)
UNION ALL
SELECT 1
FROM `{proj}.{dset}.INFORMATION_SCHEMA.VIEWS`
WHERE LOWER(table_name)=LOWER(@rel)
LIMIT 1
"""
job = self.client.query(
q,
job_config=bigquery.QueryJobConfig(
query_parameters=[bigquery.ScalarQueryParameter("rel", "STRING", rel)]
),
location=self.location,
)
return bool(list(job.result()))
def create_table_as(self, relation: str, select_sql: str) -> None:
"""CTAS with cleaned SELECT body (no trailing semicolons)."""
self._ensure_dataset()
body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
target = self._qualified_identifier(relation, project=self.project, dataset=self.dataset)
self.client.query(
f"CREATE TABLE {target} AS {body}",
location=self.location,
).result()
def incremental_insert(self, relation: str, select_sql: str) -> None:
"""INSERT INTO with cleaned SELECT body."""
self._ensure_dataset()
body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
target = self._qualified_identifier(relation, project=self.project, dataset=self.dataset)
self.client.query(
f"INSERT INTO {target} {body}",
location=self.location,
).result()
def incremental_merge(self, relation: str, select_sql: str, unique_key: list[str]) -> None:
"""
Portable fallback in BigQuery (without full MERGE):
- DELETE collisions via WHERE EXISTS against the cleaned SELECT body
- INSERT all rows from the body
Executed as two statements to keep error surfaces clean.
"""
self._ensure_dataset()
body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
target = self._qualified_identifier(relation, project=self.project, dataset=self.dataset)
pred = " AND ".join([f"t.{k}=s.{k}" for k in unique_key]) or "FALSE"
# DELETE … WHERE EXISTS (SELECT 1 FROM (body) s WHERE pred)
delete_sql = f"""
DELETE FROM {target} t
WHERE EXISTS (SELECT 1 FROM ({body}) s WHERE {pred})
"""
self.client.query(delete_sql, location=self.location).result()
# INSERT new rows
insert_sql = f"INSERT INTO {target} SELECT * FROM ({body})"
self.client.query(insert_sql, location=self.location).result()
def alter_table_sync_schema(
self, relation: str, select_sql: str, *, mode: str = "append_new_columns"
) -> None:
"""
Best-effort additive schema sync:
- infer select schema via dry-run (schema on QueryJob)
- add missing columns as NULLABLE with inferred type
"""
if mode not in {"append_new_columns", "sync_all_columns"}:
return
body = self._first_select_body(select_sql).strip().rstrip(";\n\t ")
# Infer target schema from the query (no data read)
probe_job = self.client.query(
f"SELECT * FROM ({body}) WHERE 1=0",
job_config=bigquery.QueryJobConfig(dry_run=False, use_query_cache=False),
location=self.location,
)
probe_job.result()
select_fields = {f.name: f for f in (probe_job.schema or [])}
# Existing table schema
table_ref = f"{self.project}.{self.dataset}.{relation}"
try:
tbl = self.client.get_table(table_ref)
except NotFound:
return
existing_cols = {f.name for f in (tbl.schema or [])}
to_add = [name for name in select_fields if name not in existing_cols]
if not to_add:
return
target = self._qualified_identifier(relation, project=self.project, dataset=self.dataset)
for col in to_add:
bf = select_fields[col]
# Use BigQuery standard SQL type string (e.g., STRING, INT64, BOOL, FLOAT64, …)
typ = str(bf.field_type) if hasattr(bf, "field_type") else "STRING"
# Nullable by default
self.client.query(
f"ALTER TABLE {target} ADD COLUMN {col} {typ}",
location=self.location,
).result()
|