Skip to content

fastflowtransform.executors.bigquery.bigframes

BigQueryBFExecutor

Bases: BigQueryBaseExecutor[BFDataFrame]

Source code in src/fastflowtransform/executors/bigquery/bigframes.py
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
class BigQueryBFExecutor(BigQueryBaseExecutor[BFDataFrame]):
    ENGINE_NAME: str = "bigquery"
    runtime_contracts: BigQueryRuntimeContracts

    def __init__(
        self,
        project: str,
        dataset: str,
        location: str | None = None,
        allow_create_dataset: bool = False,
    ):
        if not project:
            raise RuntimeError("BigFrames executor requires FF_BQ_PROJECT to be set.")
        if not location:
            raise RuntimeError(
                "BigFrames executor requires FF_BQ_LOCATION to be set. "
                "Use the dataset's region (e.g., EU or US)."
            )
        super().__init__(
            project=project,
            dataset=dataset,
            location=location,
            allow_create_dataset=allow_create_dataset,
        )
        self.runtime_contracts = BigQueryRuntimeContracts(self)

        try:
            ctx = BigQueryOptions(
                project=project,
                location=location,
            )
            self.session = bigframes.Session(context=ctx)
        except Exception as exc:
            raise RuntimeError(
                "Failed to initialize BigFrames session. Verify FF_BQ_PROJECT, "
                "FF_BQ_DATASET, and FF_BQ_LOCATION are set for the active profile. "
                f"{exc}"
            ) from exc

    def run_python(self, node: Node) -> None:
        """
        Execute Python models with a session scoped to this executor.

        We avoid mutating the process-wide default session; instead we
        temporarily set the executor session as the active global session so
        model code using bpd.DataFrame(...) picks up the configured location,
        then restore afterward.
        """
        ctx = bf_global_session._GlobalSessionContext(self.session)
        with ctx:
            super().run_python(node)

    # ---------- Python (Frames) ----------
    def _read_relation(self, relation: str, node: Node, deps: Iterable[str]) -> BFDataFrame:
        table_id = f"{self.project}.{self.dataset}.{relation}"
        try:
            return self.session.read_gbq(table_id)
        except NotFound as e:
            existing = [
                t.table_id for t in self.client.list_tables(f"{self.project}.{self.dataset}")
            ]
            raise RuntimeError(
                f"Dependency table not found: {table_id}\n"
                f"Deps: {list(deps)}\nExisting in dataset: {existing}\n"
                "Hinweis: Seeds/Upstream-Modelle erzeugt? DATASET korrekt?"
            ) from e

    def _materialize_relation(self, relation: str, df: BFDataFrame, node: Node) -> None:
        self._ensure_dataset()
        table_id = f"{self.project}.{self.dataset}.{relation}"

        to_gbq = getattr(df, "to_gbq", None)
        if callable(to_gbq):
            to_gbq(table_id, if_exists="replace")
            return

        # Fallback only when it is truly a method (not a column name!)
        mat = getattr(df, "materialize", None)
        if callable(mat):
            mat(table=table_id, mode="overwrite")
            return

        raise RuntimeError(
            "BigQuery DataFrames: Ergebnis nicht materialisierbar. "
            "Erwarte df.to_gbq(...) oder df.materialize(...)."
        )

    # ---- Required-columns validation tuned for BigFrames ----
    def _validate_required(
        self,
        node_name: str,
        inputs: Any,
        requires: dict[str, set[str]],
    ) -> None:
        if not requires:
            return

        def cols(bf_df: BFDataFrame) -> set[str]:
            if hasattr(bf_df, "columns"):
                return set(map(str, list(bf_df.columns)))
            if hasattr(bf_df, "schema") and hasattr(bf_df.schema, "names"):
                return set(bf_df.schema.names)
            return set()

        errs: list[str] = []
        if self._is_frame(inputs):
            # Single input frame case
            need = next(iter(requires.values()), set())
            miss = need - cols(inputs)
            if miss:
                errs.append(f"- missing columns: {sorted(miss)}")
        else:
            # Mapping {rel -> frame}
            for rel, need in requires.items():
                if rel not in inputs:
                    errs.append(f"- missing dependency key '{rel}'")
                    continue
                miss = need - cols(inputs[rel])
                if miss:
                    errs.append(f"- [{rel}] missing: {sorted(miss)}")

        if errs:
            raise ValueError(
                f"Required columns check failed for BigQuery DataFrames model '{node_name}'.\n"
                + "\n".join(errs)
            )

    def _columns_of(self, frame: BFDataFrame) -> list[str]:
        if hasattr(frame, "columns"):
            return [str(c) for c in list(frame.columns)]
        if hasattr(frame, "schema") and hasattr(frame.schema, "names"):
            return list(frame.schema.names)
        return []

    def _is_frame(self, obj: Any) -> bool:
        if obj is None:
            return False
        return (
            callable(getattr(obj, "to_gbq", None))
            or callable(getattr(obj, "materialize", None))
            or hasattr(obj, "columns")
        )

    def _frame_name(self) -> str:
        return "BigQuery DataFrame (BigFrames)"

        # ---- Unit-test helpers (pandas-facing) --------------------------------

    def utest_read_relation(self, relation: str) -> pd.DataFrame:
        """
        Read a relation into a pandas DataFrame for unit-test assertions.

        Even though this executor uses BigFrames for normal execution,
        utests compare pandas DataFrames, so we convert.
        """
        q = f"SELECT * FROM {self._qualified_identifier(relation)}"
        job = self.client.query(q, location=self.location)
        return job.result().to_dataframe(create_bqstorage_client=True)

    def utest_load_relation_from_rows(self, relation: str, rows: list[dict]) -> None:
        """
        Load rows into a BigQuery table for unit tests (replace if exists).

        Implementation uses the raw BigQuery client with pandas, which is
        perfectly fine for test input setup.
        """
        self._ensure_dataset()
        table_id = f"{self.project}.{self.dataset}.{relation}"
        df = pd.DataFrame(rows)

        job_config = LoadJobConfig(write_disposition=bigquery.WriteDisposition.WRITE_TRUNCATE)

        try:
            job = self.client.load_table_from_dataframe(
                df,
                table_id,
                job_config=job_config,
                location=self.location,
            )
            job.result()
        except BadRequest as e:
            raise RuntimeError(f"BigQuery utest write failed: {table_id}\n{e}") from e

    def utest_clean_target(self, relation: str) -> None:
        """
        For unit tests: drop any table/view with this name in the configured dataset.
        """
        table_id = f"{self.project}.{self.dataset}.{relation}"

        try:
            self.client.delete_table(table_id, not_found_ok=True)
        except NotFound:
            pass
        except TypeError:
            with suppress(NotFound):
                self.client.delete_table(table_id)
        except Exception:
            # Best-effort; don't make the whole test run fail because cleanup hiccupped.
            pass

run_python

run_python(node)

Execute Python models with a session scoped to this executor.

We avoid mutating the process-wide default session; instead we temporarily set the executor session as the active global session so model code using bpd.DataFrame(...) picks up the configured location, then restore afterward.

Source code in src/fastflowtransform/executors/bigquery/bigframes.py
64
65
66
67
68
69
70
71
72
73
74
75
def run_python(self, node: Node) -> None:
    """
    Execute Python models with a session scoped to this executor.

    We avoid mutating the process-wide default session; instead we
    temporarily set the executor session as the active global session so
    model code using bpd.DataFrame(...) picks up the configured location,
    then restore afterward.
    """
    ctx = bf_global_session._GlobalSessionContext(self.session)
    with ctx:
        super().run_python(node)

utest_read_relation

utest_read_relation(relation)

Read a relation into a pandas DataFrame for unit-test assertions.

Even though this executor uses BigFrames for normal execution, utests compare pandas DataFrames, so we convert.

Source code in src/fastflowtransform/executors/bigquery/bigframes.py
173
174
175
176
177
178
179
180
181
182
def utest_read_relation(self, relation: str) -> pd.DataFrame:
    """
    Read a relation into a pandas DataFrame for unit-test assertions.

    Even though this executor uses BigFrames for normal execution,
    utests compare pandas DataFrames, so we convert.
    """
    q = f"SELECT * FROM {self._qualified_identifier(relation)}"
    job = self.client.query(q, location=self.location)
    return job.result().to_dataframe(create_bqstorage_client=True)

utest_load_relation_from_rows

utest_load_relation_from_rows(relation, rows)

Load rows into a BigQuery table for unit tests (replace if exists).

Implementation uses the raw BigQuery client with pandas, which is perfectly fine for test input setup.

Source code in src/fastflowtransform/executors/bigquery/bigframes.py
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
def utest_load_relation_from_rows(self, relation: str, rows: list[dict]) -> None:
    """
    Load rows into a BigQuery table for unit tests (replace if exists).

    Implementation uses the raw BigQuery client with pandas, which is
    perfectly fine for test input setup.
    """
    self._ensure_dataset()
    table_id = f"{self.project}.{self.dataset}.{relation}"
    df = pd.DataFrame(rows)

    job_config = LoadJobConfig(write_disposition=bigquery.WriteDisposition.WRITE_TRUNCATE)

    try:
        job = self.client.load_table_from_dataframe(
            df,
            table_id,
            job_config=job_config,
            location=self.location,
        )
        job.result()
    except BadRequest as e:
        raise RuntimeError(f"BigQuery utest write failed: {table_id}\n{e}") from e

utest_clean_target

utest_clean_target(relation)

For unit tests: drop any table/view with this name in the configured dataset.

Source code in src/fastflowtransform/executors/bigquery/bigframes.py
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
def utest_clean_target(self, relation: str) -> None:
    """
    For unit tests: drop any table/view with this name in the configured dataset.
    """
    table_id = f"{self.project}.{self.dataset}.{relation}"

    try:
        self.client.delete_table(table_id, not_found_ok=True)
    except NotFound:
        pass
    except TypeError:
        with suppress(NotFound):
            self.client.delete_table(table_id)
    except Exception:
        # Best-effort; don't make the whole test run fail because cleanup hiccupped.
        pass

configure_contracts

configure_contracts(contracts, project_contracts)

Inject parsed contracts into this executor instance. The run engine should call this once at startup.

Source code in src/fastflowtransform/executors/base.py
148
149
150
151
152
153
154
155
156
157
158
def configure_contracts(
    self,
    contracts: Mapping[str, ContractsFileModel] | None,
    project_contracts: ProjectContractsModel | None,
) -> None:
    """
    Inject parsed contracts into this executor instance.
    The run engine should call this once at startup.
    """
    self._ff_contracts = contracts or {}
    self._ff_project_contracts = project_contracts

run_sql

run_sql(node, env)
Orchestrate SQL models

1) Render Jinja (ref/source/this) and strip leading {{ config(...) }}. 2) If the SQL is full DDL (CREATE …), execute it verbatim (passthrough). 3) Otherwise, normalize to CREATE OR REPLACE {TABLE|VIEW} AS . The body is CTE-aware (keeps WITH … SELECT … intact).

On failure, raise ModelExecutionError with a helpful snippet.

Source code in src/fastflowtransform/executors/base.py
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
def run_sql(self, node: Node, env: Environment) -> None:
    """
    Orchestrate SQL models:
      1) Render Jinja (ref/source/this) and strip leading {{ config(...) }}.
      2) If the SQL is full DDL (CREATE …), execute it verbatim (passthrough).
      3) Otherwise, normalize to CREATE OR REPLACE {TABLE|VIEW} AS <body>.
         The body is CTE-aware (keeps WITH … SELECT … intact).
    On failure, raise ModelExecutionError with a helpful snippet.
    """
    meta = getattr(node, "meta", {}) or {}
    if self._meta_is_incremental(meta):
        # Delegates to incremental engine: render, schema sync, merge/insert, etc.
        return _ff_incremental.run_or_dispatch(self, node, env)

    if self._meta_is_snapshot(meta):
        # Snapshots are executed via the dedicated CLI: `fft snapshot run`.
        raise ModelExecutionError(
            node_name=node.name,
            relation=relation_for(node.name),
            message=(
                "Snapshot models cannot be executed via 'fft run'. "
                "Use 'fft snapshot run' instead."
            ),
            sql_snippet="",
        )

    sql_rendered = self.render_sql(
        node,
        env,
        ref_resolver=lambda name: self._resolve_ref(name, env),
        source_resolver=self._resolve_source,
    )
    sql = self._strip_leading_config(sql_rendered).strip()

    materialization = (node.meta or {}).get("materialized", "table")
    if materialization == "ephemeral":
        return

    # 1) Direct DDL passthrough (CREATE [OR REPLACE] {TABLE|VIEW} …)
    if self._looks_like_direct_ddl(sql):
        try:
            self._execute_sql_direct(sql, node)
            return
        except NotImplementedError:
            # Engine doesn't implement direct DDL → fall back to normalized materialization.
            pass
        except Exception as e:
            raise ModelExecutionError(
                node_name=node.name,
                relation=relation_for(node.name),
                message=str(e),
                sql_snippet=sql,
            ) from e

    # 2) Normalized materialization path (CTE-safe body)
    body = self._selectable_body(sql).rstrip(" ;\n\t")
    target_sql = self._format_relation_for_ref(node.name)

    # Centralized SQL preview logging (applies to ALL engines)
    preview = (
        f"=== MATERIALIZE ===\n"
        f"-- model: {node.name}\n"
        f"-- materialized: {materialization}\n"
        f"-- target: {target_sql}\n"
        f"{body}\n"
    )
    echo_debug(preview)

    try:
        runtime = getattr(self, "runtime_contracts", None)
        # contracts only for TABLE materialization for now
        if runtime is not None and materialization == "table":
            contracts = getattr(self, "_ff_contracts", {}) or {}
            project_contracts = getattr(self, "_ff_project_contracts", None)

            # keying: prefer the logical table name (contracts.table),
            # but node.name or relation_for(node.name) is usually what you want.
            logical_name = relation_for(node.name)
            contract = contracts.get(logical_name) or contracts.get(node.name)

            ctx = runtime.build_context(
                node=node,
                relation=logical_name,
                physical_table=target_sql,
                contract=contract,
                project_contracts=project_contracts,
                is_incremental=self._meta_is_incremental(meta),
            )
            # Engine-specific enforcement (verify/cast/off)
            runtime.apply_sql_contracts(ctx=ctx, select_body=body)
        else:
            # Old behavior
            self._apply_sql_materialization(node, target_sql, body, materialization)
    except Exception as e:
        preview = f"-- materialized={materialization}\n-- target={target_sql}\n{body}"
        raise ModelExecutionError(
            node_name=node.name,
            relation=relation_for(node.name),
            message=str(e),
            sql_snippet=preview,
        ) from e

execute_test_sql

execute_test_sql(stmt)

Execute lightweight SQL for DQ tests using the BigQuery client.

Source code in src/fastflowtransform/executors/bigquery/base.py
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
def execute_test_sql(self, stmt: Any) -> Any:
    """
    Execute lightweight SQL for DQ tests using the BigQuery client.
    """

    def _infer_param_type(value: Any) -> str:
        if isinstance(value, bool):
            return "BOOL"
        if isinstance(value, int) and not isinstance(value, bool):
            return "INT64"
        if isinstance(value, float):
            return "FLOAT64"
        return "STRING"

    def _run_job(sql: str, params: dict[str, Any] | None = None) -> Any:
        job_config = bigquery.QueryJobConfig()
        if self.dataset:
            job_config.default_dataset = bigquery.DatasetReference(self.project, self.dataset)
        if params:
            job_config.query_parameters = [
                bigquery.ScalarQueryParameter(k, _infer_param_type(v), v)
                for k, v in params.items()
            ]
        return self.client.query(sql, job_config=job_config, location=self.location)

    def _run_one(s: Any) -> Any:
        statement_len = 2
        if (
            isinstance(s, tuple)
            and len(s) == statement_len
            and isinstance(s[0], str)
            and isinstance(s[1], dict)
        ):
            return _run_job(s[0], s[1]).result()
        if isinstance(s, str):
            # Use guarded execution path for simple statements
            return self._execute_sql(s).result()
        if isinstance(s, Iterable) and not isinstance(s, (bytes, bytearray, str)):
            res = None
            for item in s:
                res = _run_one(item)
            return res
        return _run_job(str(s)).result()

    return make_fetchable(_run_one(stmt))

configure_query_budget_limit

configure_query_budget_limit(limit)

Inject a configured per-query byte limit (e.g. from budgets.yml).

Source code in src/fastflowtransform/executors/base.py
575
576
577
578
579
580
581
582
583
584
585
586
587
def configure_query_budget_limit(self, limit: int | None) -> None:
    """
    Inject a configured per-query byte limit (e.g. from budgets.yml).
    """
    if limit is None:
        self._ff_configured_query_limit = None
        return
    try:
        iv = int(limit)
    except Exception:
        self._ff_configured_query_limit = None
        return
    self._ff_configured_query_limit = iv if iv > 0 else None

reset_node_stats

reset_node_stats()

Reset per-node statistics buffer.

The run engine calls this before executing a model so that all stats recorded via _record_query_stats(...) belong to that node.

Source code in src/fastflowtransform/executors/base.py
627
628
629
630
631
632
633
634
635
def reset_node_stats(self) -> None:
    """
    Reset per-node statistics buffer.

    The run engine calls this before executing a model so that all
    stats recorded via `_record_query_stats(...)` belong to that node.
    """
    # just clear the buffer; next recording will re-create it
    self._ff_query_stats_buffer = []

get_node_stats

get_node_stats()

Aggregate buffered QueryStats into a simple dict:

{
  "bytes_scanned": <sum>,
  "rows": <sum>,
  "query_duration_ms": <sum>,
}

Called by the run engine after a node finishes.

Source code in src/fastflowtransform/executors/base.py
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
def get_node_stats(self) -> dict[str, int]:
    """
    Aggregate buffered QueryStats into a simple dict:

        {
          "bytes_scanned": <sum>,
          "rows": <sum>,
          "query_duration_ms": <sum>,
        }

    Called by the run engine after a node finishes.
    """
    stats_list = self._drain_query_stats()
    if not stats_list:
        return {}

    total_bytes = 0
    total_rows = 0
    total_duration = 0

    for s in stats_list:
        if s.bytes_processed is not None:
            total_bytes += int(s.bytes_processed)
        if s.rows is not None:
            total_rows += int(s.rows)
        if s.duration_ms is not None:
            total_duration += int(s.duration_ms)

    return {
        "bytes_scanned": total_bytes,
        "rows": total_rows,
        "query_duration_ms": total_duration,
    }

execute_hook_sql

execute_hook_sql(sql)

Execute one SQL statement for pre/post/on_run hooks.

Source code in src/fastflowtransform/executors/bigquery/base.py
407
408
409
410
411
def execute_hook_sql(self, sql: str) -> None:
    """
    Execute one SQL statement for pre/post/on_run hooks.
    """
    self._execute_sql(sql).result()

on_node_built

on_node_built(node, relation, fingerprint)

Write/update dataset._ff_meta after a successful build. Both pandas + BigFrames executors use the logical engine key 'bigquery'.

Source code in src/fastflowtransform/executors/bigquery/base.py
271
272
273
274
275
276
277
def on_node_built(self, node: Node, relation: str, fingerprint: str) -> None:
    """
    Write/update dataset._ff_meta after a successful build.
    Both pandas + BigFrames executors use the logical engine key 'bigquery'.
    """
    ensure_meta_table(self)
    upsert_meta(self, node.name, relation, fingerprint, "bigquery")

exists_relation

exists_relation(relation)

Check presence in INFORMATION_SCHEMA for tables/views.

Source code in src/fastflowtransform/executors/bigquery/base.py
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
def exists_relation(self, relation: str) -> bool:
    """
    Check presence in INFORMATION_SCHEMA for tables/views.
    """
    proj = self.project
    dset = self.dataset
    rel = relation
    q = f"""
    SELECT 1
    FROM `{proj}.{dset}.INFORMATION_SCHEMA.TABLES`
    WHERE LOWER(table_name)=LOWER(@rel)
    UNION ALL
    SELECT 1
    FROM `{proj}.{dset}.INFORMATION_SCHEMA.VIEWS`
    WHERE LOWER(table_name)=LOWER(@rel)
    LIMIT 1
    """
    job = self.client.query(
        q,
        job_config=bigquery.QueryJobConfig(
            query_parameters=[bigquery.ScalarQueryParameter("rel", "STRING", rel)]
        ),
        location=self.location,
    )
    return bool(list(job.result()))

create_table_as

create_table_as(relation, select_sql)

CREATE TABLE AS with cleaned SELECT body (no trailing semicolons).

Source code in src/fastflowtransform/executors/bigquery/base.py
306
307
308
309
310
311
312
313
314
315
316
317
def create_table_as(self, relation: str, select_sql: str) -> None:
    """
    CREATE TABLE AS with cleaned SELECT body (no trailing semicolons).
    """
    self._ensure_dataset()
    body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
    target = self._qualified_identifier(
        relation,
        project=self.project,
        dataset=self.dataset,
    )
    self._execute_sql(f"CREATE TABLE {target} AS {body}").result()

incremental_insert

incremental_insert(relation, select_sql)

INSERT INTO with cleaned SELECT body.

Source code in src/fastflowtransform/executors/bigquery/base.py
319
320
321
322
323
324
325
326
327
328
329
330
def incremental_insert(self, relation: str, select_sql: str) -> None:
    """
    INSERT INTO with cleaned SELECT body.
    """
    self._ensure_dataset()
    body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
    target = self._qualified_identifier(
        relation,
        project=self.project,
        dataset=self.dataset,
    )
    self._execute_sql(f"INSERT INTO {target} {body}").result()

incremental_merge

incremental_merge(relation, select_sql, unique_key)
Portable fallback without native MERGE
  • DELETE collisions via WHERE EXISTS against the cleaned SELECT body
  • INSERT new rows from the same body
Source code in src/fastflowtransform/executors/bigquery/base.py
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
def incremental_merge(self, relation: str, select_sql: str, unique_key: list[str]) -> None:
    """
    Portable fallback without native MERGE:
      - DELETE collisions via WHERE EXISTS against the cleaned SELECT body
      - INSERT new rows from the same body
    """
    self._ensure_dataset()
    body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
    target = self._qualified_identifier(
        relation,
        project=self.project,
        dataset=self.dataset,
    )
    pred = " AND ".join([f"t.{k}=s.{k}" for k in unique_key]) or "FALSE"

    delete_sql = f"""
    DELETE FROM {target} t
    WHERE EXISTS (SELECT 1 FROM ({body}) s WHERE {pred})
    """
    self._execute_sql(delete_sql).result()

    insert_sql = f"INSERT INTO {target} SELECT * FROM ({body})"
    self._execute_sql(insert_sql).result()

alter_table_sync_schema

alter_table_sync_schema(relation, select_sql, *, mode='append_new_columns')
Best-effort additive schema sync
  • infer select schema via LIMIT 0 query
  • add missing columns as NULLABLE using inferred BigQuery types
Source code in src/fastflowtransform/executors/bigquery/base.py
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
def alter_table_sync_schema(
    self,
    relation: str,
    select_sql: str,
    *,
    mode: str = "append_new_columns",
) -> None:
    """
    Best-effort additive schema sync:
      - infer select schema via LIMIT 0 query
      - add missing columns as NULLABLE using inferred BigQuery types
    """
    if mode not in {"append_new_columns", "sync_all_columns"}:
        return
    self._ensure_dataset()

    body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")

    # Infer schema using a no-row query (lets BigQuery type the expressions)
    probe = self.client.query(
        f"SELECT * FROM ({body}) WHERE 1=0",
        job_config=bigquery.QueryJobConfig(dry_run=False, use_query_cache=False),
        location=self.location,
    )
    probe.result()
    out_fields = {f.name: f for f in (probe.schema or [])}

    # Existing table schema
    table_ref = f"{self.project}.{self.dataset}.{relation}"
    try:
        tbl = self.client.get_table(table_ref)
    except NotFound:
        return
    existing_cols = {f.name for f in (tbl.schema or [])}

    to_add = [name for name in out_fields if name not in existing_cols]
    if not to_add:
        return

    target = self._qualified_identifier(
        relation,
        project=self.project,
        dataset=self.dataset,
    )
    for col in to_add:
        f = out_fields[col]
        typ = str(f.field_type) if hasattr(f, "field_type") else "STRING"
        self._execute_sql_basic(f"ALTER TABLE {target} ADD COLUMN {col} {typ}").result()

normalize_physical_type

normalize_physical_type(t)

Canonicalize a physical type string for comparisons (DQ + contracts).

Default: just strip + lower. Engines may override to account for dialect quirks in information_schema (e.g. Postgres timestamp variants, Snowflake VARCHAR(…) / NUMBER(…)).

Source code in src/fastflowtransform/executors/base.py
1197
1198
1199
1200
1201
1202
1203
1204
1205
def normalize_physical_type(self, t: str | None) -> str:
    """
    Canonicalize a physical type string for comparisons (DQ + contracts).

    Default: just strip + lower.
    Engines may override to account for dialect quirks in information_schema
    (e.g. Postgres timestamp variants, Snowflake VARCHAR(…) / NUMBER(…)).
    """
    return (t or "").strip().lower()

collect_docs_columns

collect_docs_columns()

Column metadata for docs (project+dataset scoped).

Source code in src/fastflowtransform/executors/bigquery/base.py
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
def collect_docs_columns(self) -> dict[str, list[ColumnInfo]]:
    """
    Column metadata for docs (project+dataset scoped).
    """
    sql = f"""
    select table_name, column_name, data_type, is_nullable
    from `{self.project}.{self.dataset}.INFORMATION_SCHEMA.COLUMNS`
    order by table_name, ordinal_position
    """
    try:
        job = self.client.query(
            sql,
            job_config=bigquery.QueryJobConfig(
                default_dataset=bigquery.DatasetReference(self.project, self.dataset)
            ),
            location=self.location,
        )
        rows = list(job.result())
    except Exception:
        return {}

    out: dict[str, list[ColumnInfo]] = {}
    for row in rows:
        table = str(row["table_name"])
        col = str(row["column_name"])
        dtype = str(row["data_type"])
        nullable = str(row["is_nullable"]).upper() == "YES"
        out.setdefault(table, []).append(ColumnInfo(col, dtype, nullable))
    return out