Skip to content

fastflowtransform.executors.bigquery.base

BigQueryBaseExecutor

Bases: BigQueryIdentifierMixin, SnapshotSqlMixin, BaseExecutor[TFrame]

Shared BigQuery executor logic (SQL, incremental, meta, DQ helpers).

Subclasses are responsible for
  • frame type (pandas / BigFrames / ...)
  • _read_relation()
  • _materialize_relation()
  • _is_frame()
  • _frame_name()
Source code in src/fastflowtransform/executors/bigquery/base.py
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
class BigQueryBaseExecutor(BigQueryIdentifierMixin, SnapshotSqlMixin, BaseExecutor[TFrame]):
    """
    Shared BigQuery executor logic (SQL, incremental, meta, DQ helpers).

    Subclasses are responsible for:
      - frame type (pandas / BigFrames / ...)
      - _read_relation()
      - _materialize_relation()
      - _is_frame()
      - _frame_name()
    """

    # Subclasses override ENGINE_NAME ("bigquery", "bigquery_batch", ...)
    ENGINE_NAME = "bigquery_base"
    _BUDGET_GUARD = BudgetGuard(
        env_var="FF_BQ_MAX_BYTES",
        estimator_attr="_estimate_query_bytes",
        engine_label="BigQuery",
        what="query",
    )

    def __init__(
        self,
        project: str,
        dataset: str,
        location: str | None = None,
        client: Client | None = None,
        allow_create_dataset: bool = False,
    ):
        self.project = project
        self.dataset = dataset
        self.location = location
        self.allow_create_dataset = allow_create_dataset
        self.client: Client = client or bigquery.Client(
            project=self.project,
            location=self.location,
        )
        # Testing-API: con.execute(...)
        self.con = BigQueryConnShim(
            self.client,
            location=self.location,
            project=self.project,
            dataset=self.dataset,
        )

    def _execute_sql(self, sql: str) -> _TrackedQueryJob:
        """
        Central BigQuery query runner.

        - All 'real' SQL statements in this executor should go through here.
        - Returns the QueryJob so callers can call .result().
        """

        def _exec() -> _TrackedQueryJob:
            job_config = bigquery.QueryJobConfig()
            if self.dataset:
                # Let unqualified tables resolve to project.dataset.table
                job_config.default_dataset = bigquery.DatasetReference(self.project, self.dataset)

            job = self.client.query(
                sql,
                job_config=job_config,
                location=self.location,
            )
            return _TrackedQueryJob(job, on_complete=self._record_query_job_stats)

        return run_sql_with_budget(
            self,
            sql,
            guard=self._BUDGET_GUARD,
            exec_fn=_exec,
            estimate_fn=self._estimate_query_bytes,
            record_stats=False,
        )

    # --- Cost estimation for the shared BudgetGuard -----------------

    def _estimate_query_bytes(self, sql: str) -> int | None:
        """
        Estimate bytes for a BigQuery SQL statement using a dry-run.

        Returns the estimated bytes, or None if estimation is not possible.
        """
        cfg = bigquery.QueryJobConfig(
            dry_run=True,
            use_query_cache=False,
        )
        if self.dataset:
            # Let unqualified tables resolve to project.dataset.table
            cfg.default_dataset = bigquery.DatasetReference(self.project, self.dataset)

        job = self.client.query(
            sql,
            job_config=cfg,
            location=self.location,
        )
        # Dry-run is free; we just need the job metadata
        job.result()
        return int(getattr(job, "total_bytes_processed", 0) or 0)

    # ---- DQ test table formatting (fft test) ----
    def _format_test_table(self, table: str | None) -> str | None:
        """
        Ensure tests use fully-qualified BigQuery identifiers in fft test.
        """
        table = super()._format_test_table(table)
        if not isinstance(table, str) or not table.strip():
            return table
        return self._qualified_identifier(table.strip())

    # ---- SQL hooks ----
    def _this_identifier(self, node: Node) -> str:
        """
        Ensure {{ this }} renders as a fully-qualified identifier so BigQuery
        incremental SQL (e.g., subqueries against {{ this }}) includes project
        and dataset.
        """
        return self._qualify_identifier(relation_for(node.name))

    def _apply_sql_materialization(
        self,
        node: Node,
        target_sql: str,
        select_body: str,
        materialization: str,
    ) -> None:
        self._ensure_dataset()
        try:
            super()._apply_sql_materialization(node, target_sql, select_body, materialization)
        except BadRequest as e:
            raise RuntimeError(
                f"BigQuery SQL failed for {target_sql}:\n{select_body}\n\n{e}"
            ) from e

    def _create_or_replace_view(self, target_sql: str, select_body: str, node: Node) -> None:
        self._execute_sql(f"CREATE OR REPLACE VIEW {target_sql} AS {select_body}").result()

    def _create_or_replace_table(self, target_sql: str, select_body: str, node: Node) -> None:
        self._execute_sql(f"CREATE OR REPLACE TABLE {target_sql} AS {select_body}").result()

    def _create_or_replace_view_from_table(
        self,
        view_name: str,
        backing_table: str,
        node: Node,
    ) -> None:
        view_id = self._qualified_identifier(view_name)
        back_id = self._qualified_identifier(backing_table)
        self._ensure_dataset()
        self._execute_sql(f"CREATE OR REPLACE VIEW {view_id} AS SELECT * FROM {back_id}").result()

    # ---- Snapshot mixin hooks ----
    def _snapshot_prepare_target(self) -> None:
        self._ensure_dataset()

    def _snapshot_target_identifier(self, rel_name: str) -> str:
        return self._qualified_identifier(rel_name)

    def _snapshot_current_timestamp(self) -> str:
        return "CURRENT_TIMESTAMP()"

    def _snapshot_null_timestamp(self) -> str:
        return "CAST(NULL AS TIMESTAMP)"

    def _snapshot_null_hash(self) -> str:
        return "CAST(NULL AS STRING)"

    def _snapshot_hash_expr(self, check_cols: list[str], src_alias: str) -> str:
        concat_expr = self._snapshot_concat_expr(check_cols, src_alias)
        return f"TO_HEX(MD5({concat_expr}))"

    def _snapshot_cast_as_string(self, expr: str) -> str:
        return f"CAST({expr} AS STRING)"

    # ---- Meta hook ----
    def on_node_built(self, node: Node, relation: str, fingerprint: str) -> None:
        """
        Write/update dataset._ff_meta after a successful build.
        Both pandas + BigFrames executors use the logical engine key 'bigquery'.
        """
        ensure_meta_table(self)
        upsert_meta(self, node.name, relation, fingerprint, "bigquery")

    # ── Incremental API (shared across BigQuery executors) ───────────────
    def exists_relation(self, relation: str) -> bool:
        """
        Check presence in INFORMATION_SCHEMA for tables/views.
        """
        proj = self.project
        dset = self.dataset
        rel = relation
        q = f"""
        SELECT 1
        FROM `{proj}.{dset}.INFORMATION_SCHEMA.TABLES`
        WHERE LOWER(table_name)=LOWER(@rel)
        UNION ALL
        SELECT 1
        FROM `{proj}.{dset}.INFORMATION_SCHEMA.VIEWS`
        WHERE LOWER(table_name)=LOWER(@rel)
        LIMIT 1
        """
        job = self.client.query(
            q,
            job_config=bigquery.QueryJobConfig(
                query_parameters=[bigquery.ScalarQueryParameter("rel", "STRING", rel)]
            ),
            location=self.location,
        )
        return bool(list(job.result()))

    def create_table_as(self, relation: str, select_sql: str) -> None:
        """
        CREATE TABLE AS with cleaned SELECT body (no trailing semicolons).
        """
        self._ensure_dataset()
        body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
        target = self._qualified_identifier(
            relation,
            project=self.project,
            dataset=self.dataset,
        )
        self._execute_sql(f"CREATE TABLE {target} AS {body}").result()

    def incremental_insert(self, relation: str, select_sql: str) -> None:
        """
        INSERT INTO with cleaned SELECT body.
        """
        self._ensure_dataset()
        body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
        target = self._qualified_identifier(
            relation,
            project=self.project,
            dataset=self.dataset,
        )
        self._execute_sql(f"INSERT INTO {target} {body}").result()

    def incremental_merge(self, relation: str, select_sql: str, unique_key: list[str]) -> None:
        """
        Portable fallback without native MERGE:
          - DELETE collisions via WHERE EXISTS against the cleaned SELECT body
          - INSERT new rows from the same body
        """
        self._ensure_dataset()
        body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
        target = self._qualified_identifier(
            relation,
            project=self.project,
            dataset=self.dataset,
        )
        pred = " AND ".join([f"t.{k}=s.{k}" for k in unique_key]) or "FALSE"

        delete_sql = f"""
        DELETE FROM {target} t
        WHERE EXISTS (SELECT 1 FROM ({body}) s WHERE {pred})
        """
        self._execute_sql(delete_sql).result()

        insert_sql = f"INSERT INTO {target} SELECT * FROM ({body})"
        self._execute_sql(insert_sql).result()

    def alter_table_sync_schema(
        self,
        relation: str,
        select_sql: str,
        *,
        mode: str = "append_new_columns",
    ) -> None:
        """
        Best-effort additive schema sync:
          - infer select schema via LIMIT 0 query
          - add missing columns as NULLABLE using inferred BigQuery types
        """
        if mode not in {"append_new_columns", "sync_all_columns"}:
            return
        self._ensure_dataset()

        body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")

        # Infer schema using a no-row query (lets BigQuery type the expressions)
        probe = self.client.query(
            f"SELECT * FROM ({body}) WHERE 1=0",
            job_config=bigquery.QueryJobConfig(dry_run=False, use_query_cache=False),
            location=self.location,
        )
        probe.result()
        out_fields = {f.name: f for f in (probe.schema or [])}

        # Existing table schema
        table_ref = f"{self.project}.{self.dataset}.{relation}"
        try:
            tbl = self.client.get_table(table_ref)
        except NotFound:
            return
        existing_cols = {f.name for f in (tbl.schema or [])}

        to_add = [name for name in out_fields if name not in existing_cols]
        if not to_add:
            return

        target = self._qualified_identifier(
            relation,
            project=self.project,
            dataset=self.dataset,
        )
        for col in to_add:
            f = out_fields[col]
            typ = str(f.field_type) if hasattr(f, "field_type") else "STRING"
            self._execute_sql(f"ALTER TABLE {target} ADD COLUMN {col} {typ}").result()

    # ── Snapshots API (shared for pandas + BigFrames) ─────────────────────

    def execute_hook_sql(self, sql: str) -> None:
        """
        Execute one SQL statement for pre/post/on_run hooks.
        """
        self._execute_sql(sql).result()

on_node_built

on_node_built(node, relation, fingerprint)

Write/update dataset._ff_meta after a successful build. Both pandas + BigFrames executors use the logical engine key 'bigquery'.

Source code in src/fastflowtransform/executors/bigquery/base.py
195
196
197
198
199
200
201
def on_node_built(self, node: Node, relation: str, fingerprint: str) -> None:
    """
    Write/update dataset._ff_meta after a successful build.
    Both pandas + BigFrames executors use the logical engine key 'bigquery'.
    """
    ensure_meta_table(self)
    upsert_meta(self, node.name, relation, fingerprint, "bigquery")

exists_relation

exists_relation(relation)

Check presence in INFORMATION_SCHEMA for tables/views.

Source code in src/fastflowtransform/executors/bigquery/base.py
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
def exists_relation(self, relation: str) -> bool:
    """
    Check presence in INFORMATION_SCHEMA for tables/views.
    """
    proj = self.project
    dset = self.dataset
    rel = relation
    q = f"""
    SELECT 1
    FROM `{proj}.{dset}.INFORMATION_SCHEMA.TABLES`
    WHERE LOWER(table_name)=LOWER(@rel)
    UNION ALL
    SELECT 1
    FROM `{proj}.{dset}.INFORMATION_SCHEMA.VIEWS`
    WHERE LOWER(table_name)=LOWER(@rel)
    LIMIT 1
    """
    job = self.client.query(
        q,
        job_config=bigquery.QueryJobConfig(
            query_parameters=[bigquery.ScalarQueryParameter("rel", "STRING", rel)]
        ),
        location=self.location,
    )
    return bool(list(job.result()))

create_table_as

create_table_as(relation, select_sql)

CREATE TABLE AS with cleaned SELECT body (no trailing semicolons).

Source code in src/fastflowtransform/executors/bigquery/base.py
230
231
232
233
234
235
236
237
238
239
240
241
def create_table_as(self, relation: str, select_sql: str) -> None:
    """
    CREATE TABLE AS with cleaned SELECT body (no trailing semicolons).
    """
    self._ensure_dataset()
    body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
    target = self._qualified_identifier(
        relation,
        project=self.project,
        dataset=self.dataset,
    )
    self._execute_sql(f"CREATE TABLE {target} AS {body}").result()

incremental_insert

incremental_insert(relation, select_sql)

INSERT INTO with cleaned SELECT body.

Source code in src/fastflowtransform/executors/bigquery/base.py
243
244
245
246
247
248
249
250
251
252
253
254
def incremental_insert(self, relation: str, select_sql: str) -> None:
    """
    INSERT INTO with cleaned SELECT body.
    """
    self._ensure_dataset()
    body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
    target = self._qualified_identifier(
        relation,
        project=self.project,
        dataset=self.dataset,
    )
    self._execute_sql(f"INSERT INTO {target} {body}").result()

incremental_merge

incremental_merge(relation, select_sql, unique_key)
Portable fallback without native MERGE
  • DELETE collisions via WHERE EXISTS against the cleaned SELECT body
  • INSERT new rows from the same body
Source code in src/fastflowtransform/executors/bigquery/base.py
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
def incremental_merge(self, relation: str, select_sql: str, unique_key: list[str]) -> None:
    """
    Portable fallback without native MERGE:
      - DELETE collisions via WHERE EXISTS against the cleaned SELECT body
      - INSERT new rows from the same body
    """
    self._ensure_dataset()
    body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
    target = self._qualified_identifier(
        relation,
        project=self.project,
        dataset=self.dataset,
    )
    pred = " AND ".join([f"t.{k}=s.{k}" for k in unique_key]) or "FALSE"

    delete_sql = f"""
    DELETE FROM {target} t
    WHERE EXISTS (SELECT 1 FROM ({body}) s WHERE {pred})
    """
    self._execute_sql(delete_sql).result()

    insert_sql = f"INSERT INTO {target} SELECT * FROM ({body})"
    self._execute_sql(insert_sql).result()

alter_table_sync_schema

alter_table_sync_schema(relation, select_sql, *, mode='append_new_columns')
Best-effort additive schema sync
  • infer select schema via LIMIT 0 query
  • add missing columns as NULLABLE using inferred BigQuery types
Source code in src/fastflowtransform/executors/bigquery/base.py
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
def alter_table_sync_schema(
    self,
    relation: str,
    select_sql: str,
    *,
    mode: str = "append_new_columns",
) -> None:
    """
    Best-effort additive schema sync:
      - infer select schema via LIMIT 0 query
      - add missing columns as NULLABLE using inferred BigQuery types
    """
    if mode not in {"append_new_columns", "sync_all_columns"}:
        return
    self._ensure_dataset()

    body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")

    # Infer schema using a no-row query (lets BigQuery type the expressions)
    probe = self.client.query(
        f"SELECT * FROM ({body}) WHERE 1=0",
        job_config=bigquery.QueryJobConfig(dry_run=False, use_query_cache=False),
        location=self.location,
    )
    probe.result()
    out_fields = {f.name: f for f in (probe.schema or [])}

    # Existing table schema
    table_ref = f"{self.project}.{self.dataset}.{relation}"
    try:
        tbl = self.client.get_table(table_ref)
    except NotFound:
        return
    existing_cols = {f.name for f in (tbl.schema or [])}

    to_add = [name for name in out_fields if name not in existing_cols]
    if not to_add:
        return

    target = self._qualified_identifier(
        relation,
        project=self.project,
        dataset=self.dataset,
    )
    for col in to_add:
        f = out_fields[col]
        typ = str(f.field_type) if hasattr(f, "field_type") else "STRING"
        self._execute_sql(f"ALTER TABLE {target} ADD COLUMN {col} {typ}").result()

execute_hook_sql

execute_hook_sql(sql)

Execute one SQL statement for pre/post/on_run hooks.

Source code in src/fastflowtransform/executors/bigquery/base.py
331
332
333
334
335
def execute_hook_sql(self, sql: str) -> None:
    """
    Execute one SQL statement for pre/post/on_run hooks.
    """
    self._execute_sql(sql).result()

run_sql

run_sql(node, env)
Orchestrate SQL models

1) Render Jinja (ref/source/this) and strip leading {{ config(...) }}. 2) If the SQL is full DDL (CREATE …), execute it verbatim (passthrough). 3) Otherwise, normalize to CREATE OR REPLACE {TABLE|VIEW} AS . The body is CTE-aware (keeps WITH … SELECT … intact).

On failure, raise ModelExecutionError with a helpful snippet.

Source code in src/fastflowtransform/executors/base.py
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
def run_sql(self, node: Node, env: Environment) -> None:
    """
    Orchestrate SQL models:
      1) Render Jinja (ref/source/this) and strip leading {{ config(...) }}.
      2) If the SQL is full DDL (CREATE …), execute it verbatim (passthrough).
      3) Otherwise, normalize to CREATE OR REPLACE {TABLE|VIEW} AS <body>.
         The body is CTE-aware (keeps WITH … SELECT … intact).
    On failure, raise ModelExecutionError with a helpful snippet.
    """
    meta = getattr(node, "meta", {}) or {}
    if self._meta_is_incremental(meta):
        # Delegates to incremental engine: render, schema sync, merge/insert, etc.
        return _ff_incremental.run_or_dispatch(self, node, env)

    if self._meta_is_snapshot(meta):
        # Snapshots are executed via the dedicated CLI: `fft snapshot run`.
        raise ModelExecutionError(
            node_name=node.name,
            relation=relation_for(node.name),
            message=(
                "Snapshot models cannot be executed via 'fft run'. "
                "Use 'fft snapshot run' instead."
            ),
            sql_snippet="",
        )

    sql_rendered = self.render_sql(
        node,
        env,
        ref_resolver=lambda name: self._resolve_ref(name, env),
        source_resolver=self._resolve_source,
    )
    sql = self._strip_leading_config(sql_rendered).strip()

    materialization = (node.meta or {}).get("materialized", "table")
    if materialization == "ephemeral":
        return

    # 1) Direct DDL passthrough (CREATE [OR REPLACE] {TABLE|VIEW} …)
    if self._looks_like_direct_ddl(sql):
        try:
            self._execute_sql_direct(sql, node)
            return
        except NotImplementedError:
            # Engine doesn't implement direct DDL → fall back to normalized materialization.
            pass
        except Exception as e:
            raise ModelExecutionError(
                node_name=node.name,
                relation=relation_for(node.name),
                message=str(e),
                sql_snippet=sql,
            ) from e

    # 2) Normalized materialization path (CTE-safe body)
    body = self._selectable_body(sql).rstrip(" ;\n\t")
    target_sql = self._format_relation_for_ref(node.name)

    # Centralized SQL preview logging (applies to ALL engines)
    preview = (
        f"=== MATERIALIZE ===\n"
        f"-- model: {node.name}\n"
        f"-- materialized: {materialization}\n"
        f"-- target: {target_sql}\n"
        f"{body}\n"
    )
    echo_debug(preview)

    try:
        self._apply_sql_materialization(node, target_sql, body, materialization)
    except Exception as e:
        preview = f"-- materialized={materialization}\n-- target={target_sql}\n{body}"
        raise ModelExecutionError(
            node_name=node.name,
            relation=relation_for(node.name),
            message=str(e),
            sql_snippet=preview,
        ) from e

configure_query_budget_limit

configure_query_budget_limit(limit)

Inject a configured per-query byte limit (e.g. from budgets.yml).

Source code in src/fastflowtransform/executors/base.py
501
502
503
504
505
506
507
508
509
510
511
512
513
def configure_query_budget_limit(self, limit: int | None) -> None:
    """
    Inject a configured per-query byte limit (e.g. from budgets.yml).
    """
    if limit is None:
        self._ff_configured_query_limit = None
        return
    try:
        iv = int(limit)
    except Exception:
        self._ff_configured_query_limit = None
        return
    self._ff_configured_query_limit = iv if iv > 0 else None

reset_node_stats

reset_node_stats()

Reset per-node statistics buffer.

The run engine calls this before executing a model so that all stats recorded via _record_query_stats(...) belong to that node.

Source code in src/fastflowtransform/executors/base.py
553
554
555
556
557
558
559
560
561
def reset_node_stats(self) -> None:
    """
    Reset per-node statistics buffer.

    The run engine calls this before executing a model so that all
    stats recorded via `_record_query_stats(...)` belong to that node.
    """
    # just clear the buffer; next recording will re-create it
    self._ff_query_stats_buffer = []

get_node_stats

get_node_stats()

Aggregate buffered QueryStats into a simple dict:

{
  "bytes_scanned": <sum>,
  "rows": <sum>,
  "query_duration_ms": <sum>,
}

Called by the run engine after a node finishes.

Source code in src/fastflowtransform/executors/base.py
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
def get_node_stats(self) -> dict[str, int]:
    """
    Aggregate buffered QueryStats into a simple dict:

        {
          "bytes_scanned": <sum>,
          "rows": <sum>,
          "query_duration_ms": <sum>,
        }

    Called by the run engine after a node finishes.
    """
    stats_list = self._drain_query_stats()
    if not stats_list:
        return {}

    total_bytes = 0
    total_rows = 0
    total_duration = 0

    for s in stats_list:
        if s.bytes_processed is not None:
            total_bytes += int(s.bytes_processed)
        if s.rows is not None:
            total_rows += int(s.rows)
        if s.duration_ms is not None:
            total_duration += int(s.duration_ms)

    return {
        "bytes_scanned": total_bytes,
        "rows": total_rows,
        "query_duration_ms": total_duration,
    }

run_python

run_python(node)

Execute the Python model for a given node and materialize its result.

Source code in src/fastflowtransform/executors/base.py
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
def run_python(self, node: Node) -> None:
    """Execute the Python model for a given node and materialize its result."""
    func = REGISTRY.py_funcs[node.name]
    deps = REGISTRY.nodes[node.name].deps or []

    self._reset_http_ctx(node)

    # arg = self._build_python_args(node, deps)
    args, argmap = self._build_python_inputs(node, deps)
    requires = REGISTRY.py_requires.get(node.name, {})
    # if deps:
    #     self._validate_required(node.name, arg, requires)
    if deps:
        # Required-columns check works against the mapping
        self._validate_required(node.name, argmap, requires)

    # out = self._execute_python_func(func, arg, node)
    out = self._execute_python_func(func, args, node)

    target = relation_for(node.name)
    meta = getattr(node, "meta", {}) or {}
    mat = self._resolve_materialization_strategy(meta)

    if mat == "incremental":
        self._materialize_incremental(target, out, node, meta)
    elif mat == "view":
        self._materialize_view(target, out, node)
    else:
        self._materialize_relation(target, out, node)

    self._snapshot_http_ctx(node)

snapshot_prune

snapshot_prune(relation, unique_key, keep_last, *, dry_run=False)

Delete older snapshot versions while keeping the most recent keep_last rows per business key (including the current row).

Source code in src/fastflowtransform/executors/_snapshot_sql_mixin.py
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    def snapshot_prune(
        self,
        relation: str,
        unique_key: list[str],
        keep_last: int,
        *,
        dry_run: bool = False,
    ) -> None:
        """
        Delete older snapshot versions while keeping the most recent `keep_last`
        rows per business key (including the current row).
        """
        ex = cast("BaseExecutor[Any]", self)

        if keep_last <= 0:
            return

        keys = [k for k in unique_key if k]
        if not keys:
            return

        target = self._snapshot_target_identifier(relation)
        vf = self.SNAPSHOT_VALID_FROM_COL  # type: ignore[attr-defined]

        key_select = ", ".join(keys)
        part_by = ", ".join(keys)

        ranked_sql = f"""
SELECT
  {key_select},
  {vf},
  ROW_NUMBER() OVER (
    PARTITION BY {part_by}
    ORDER BY {vf} DESC
  ) AS rn
FROM {target}
"""

        if dry_run:
            sql = f"""
WITH ranked AS (
  {ranked_sql}
)
SELECT COUNT(*) AS rows_to_delete
FROM ranked
WHERE rn > {int(keep_last)}
"""
            res = ex._execute_sql(sql)
            count = self._snapshot_fetch_count(res)
            echo(
                f"[DRY-RUN] snapshot_prune({relation}): would delete {count} row(s) "
                f"(keep_last={keep_last})"
            )
            return

        join_pred = " AND ".join([f"t.{k} = r.{k}" for k in keys])
        delete_sql = f"""
DELETE FROM {target} t
USING (
  {ranked_sql}
) r
WHERE
  r.rn > {int(keep_last)}
  AND {join_pred}
  AND t.{vf} = r.{vf}
"""
        ex._execute_sql(delete_sql)

utest_load_relation_from_rows

utest_load_relation_from_rows(relation, rows)

Load test input rows into a physical relation for unit tests.

Default: not implemented. Engines that support fft utest should override.

Source code in src/fastflowtransform/executors/base.py
1060
1061
1062
1063
1064
1065
1066
1067
1068
def utest_load_relation_from_rows(self, relation: str, rows: list[dict]) -> None:
    """
    Load test input rows into a physical relation for unit tests.

    Default: not implemented. Engines that support `fft utest` should override.
    """
    raise NotImplementedError(
        f"utest_load_relation_from_rows not implemented for engine '{self.engine_name}'."
    )

utest_read_relation

utest_read_relation(relation)

Read a physical relation into a pandas.DataFrame for unit-test assertions.

Default: not implemented. Engines that support fft utest should override.

Source code in src/fastflowtransform/executors/base.py
1070
1071
1072
1073
1074
1075
1076
1077
1078
def utest_read_relation(self, relation: str) -> _PDDataFrame:
    """
    Read a physical relation into a pandas.DataFrame for unit-test assertions.

    Default: not implemented. Engines that support `fft utest` should override.
    """
    raise NotImplementedError(
        f"utest_read_relation not implemented for engine '{self.engine_name}'."
    )

utest_clean_target

utest_clean_target(relation)

Best-effort cleanup hook before executing a unit-test model:

  • Drop tables/views with the target name so view<->table flips cannot fail (DuckDB, Postgres, ...).
  • This runs only in fft utest, and we already enforce that utest profiles use isolated DBs/schemas.

Default: no-op.

Source code in src/fastflowtransform/executors/base.py
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
def utest_clean_target(self, relation: str) -> None:
    """
    Best-effort cleanup hook before executing a unit-test model:

    - Drop tables/views with the target name so view<->table flips
      cannot fail (DuckDB, Postgres, ...).
    - This runs *only* in `fft utest`, and we already enforce that
      utest profiles use isolated DBs/schemas.

    Default: no-op.
    """
    return