Skip to content

fastflowtransform.executors.bigquery.base

BigQueryBaseExecutor

Bases: SqlIdentifierMixin, BaseExecutor[TFrame]

Shared BigQuery executor logic (SQL, incremental, meta, DQ helpers).

Subclasses are responsible for
  • frame type (pandas / BigFrames / ...)
  • _read_relation()
  • _materialize_relation()
  • _is_frame()
  • _frame_name()
Source code in src/fastflowtransform/executors/bigquery/base.py
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
class BigQueryBaseExecutor(SqlIdentifierMixin, BaseExecutor[TFrame]):
    """
    Shared BigQuery executor logic (SQL, incremental, meta, DQ helpers).

    Subclasses are responsible for:
      - frame type (pandas / BigFrames / ...)
      - _read_relation()
      - _materialize_relation()
      - _is_frame()
      - _frame_name()
    """

    # Subclasses override ENGINE_NAME ("bigquery", "bigquery_batch", ...)
    ENGINE_NAME = "bigquery_base"
    runtime_query_stats: BigQueryQueryStatsRuntime
    runtime_budget: BigQueryBudgetRuntime

    def __init__(
        self,
        project: str,
        dataset: str,
        location: str | None = None,
        client: Client | None = None,
        allow_create_dataset: bool = False,
    ):
        self.project = project
        self.dataset = dataset
        self.location = location
        self.allow_create_dataset = allow_create_dataset
        self.client: Client = client or bigquery.Client(
            project=self.project,
            location=self.location,
        )
        self.runtime_query_stats = BigQueryQueryStatsRuntime(self)
        self.runtime_budget = BigQueryBudgetRuntime(self)
        self.snapshot_runtime = BigQuerySnapshotRuntime(self)

    # ---- Identifier helpers ----
    def _bq_quote(self, value: str) -> str:
        return value.replace("`", "\\`")

    def _quote_identifier(self, ident: str) -> str:
        return self._bq_quote(ident)

    def _default_schema(self) -> str | None:
        return self.dataset

    def _default_catalog(self) -> str | None:
        return self.project

    def _should_include_catalog(
        self, catalog: str | None, schema: str | None, *, explicit: bool
    ) -> bool:
        # BigQuery always expects a project + dataset.
        return True

    def _qualify_identifier(
        self,
        ident: str,
        *,
        schema: str | None = None,
        catalog: str | None = None,
        quote: bool = True,
    ) -> str:
        proj = self._clean_part(catalog) or self._default_catalog()
        dset = self._clean_part(schema) or self._default_schema()
        normalized = self._normalize_identifier(ident)
        parts = [proj, dset, normalized]
        if not quote:
            return ".".join(p for p in parts if p)
        return f"`{'.'.join(self._bq_quote(p) for p in parts if p)}`"

    def _qualified_identifier(
        self, relation: str, project: str | None = None, dataset: str | None = None
    ) -> str:
        return self._qualify_identifier(relation, schema=dataset, catalog=project)

    def _qualified_api_identifier(
        self, relation: str, project: str | None = None, dataset: str | None = None
    ) -> str:
        """
        Build an API-safe identifier (project.dataset.table) without backticks.
        """
        return self._qualify_identifier(
            relation,
            schema=dataset,
            catalog=project,
            quote=False,
        )

    def _ensure_dataset(self) -> None:
        ds_id = f"{self.project}.{self.dataset}"
        try:
            self.client.get_dataset(ds_id)
            return
        except NotFound:
            if not getattr(self, "allow_create_dataset", False):
                raise

        ds_obj = bigquery.Dataset(ds_id)
        if getattr(self, "location", None):
            ds_obj.location = self.location
        self.client.create_dataset(ds_obj, exists_ok=True)

    def execute_test_sql(self, stmt: Any) -> Any:
        """
        Execute lightweight SQL for DQ tests using the BigQuery client.
        """

        def _infer_param_type(value: Any) -> str:
            if isinstance(value, bool):
                return "BOOL"
            if isinstance(value, int) and not isinstance(value, bool):
                return "INT64"
            if isinstance(value, float):
                return "FLOAT64"
            return "STRING"

        def _run_job(sql: str, params: dict[str, Any] | None = None) -> Any:
            job_config = bigquery.QueryJobConfig()
            if self.dataset:
                job_config.default_dataset = bigquery.DatasetReference(self.project, self.dataset)
            if params:
                job_config.query_parameters = [
                    bigquery.ScalarQueryParameter(k, _infer_param_type(v), v)
                    for k, v in params.items()
                ]
            return self.client.query(sql, job_config=job_config, location=self.location)

        def _run_one(s: Any) -> Any:
            statement_len = 2
            if (
                isinstance(s, tuple)
                and len(s) == statement_len
                and isinstance(s[0], str)
                and isinstance(s[1], dict)
            ):
                return _run_job(s[0], s[1]).result()
            if isinstance(s, str):
                # Use guarded execution path for simple statements
                return self._execute_sql(s).result()
            if isinstance(s, Iterable) and not isinstance(s, (bytes, bytearray, str)):
                res = None
                for item in s:
                    res = _run_one(item)
                return res
            return _run_job(str(s)).result()

        return make_fetchable(_run_one(stmt))

    def compute_freshness_delay_minutes(self, table: str, ts_col: str) -> tuple[float | None, str]:
        sql = (
            f"select cast(TIMESTAMP_DIFF(CURRENT_TIMESTAMP(), max({ts_col}), MINUTE) as float64) "
            f"as delay_min from {table}"
        )
        res = self.execute_test_sql(sql)
        delay = getattr(res, "fetchone", lambda: None)()
        val = delay[0] if delay else None
        return (float(val) if val is not None else None, sql)

    def _execute_sql_basic(self, sql: str) -> _TrackedQueryJob:
        job_config = bigquery.QueryJobConfig()
        if self.dataset:
            # Let unqualified tables resolve to project.dataset.table
            job_config.default_dataset = bigquery.DatasetReference(self.project, self.dataset)

        job = self.client.query(
            sql,
            job_config=job_config,
            location=self.location,
        )
        return self.runtime_query_stats.wrap_job(job)

    def _execute_sql(self, sql: str) -> _TrackedQueryJob:
        """
        Central BigQuery query runner.

        - All 'real' SQL statements in this executor should go through here.
        - Returns the QueryJob so callers can call .result().
        """

        def _exec() -> _TrackedQueryJob:
            return self._execute_sql_basic(sql)

        return self.runtime_budget.run_sql(
            sql,
            exec_fn=_exec,
            stats_runtime=self.runtime_query_stats,
            record_stats=False,
        )

    # ---- DQ test table formatting (fft test) ----
    def _format_test_table(self, table: str | None) -> str | None:
        """
        Ensure tests use fully-qualified BigQuery identifiers in fft test.
        """
        table = super()._format_test_table(table)
        if not isinstance(table, str):
            return table
        stripped = table.strip()
        if not stripped or stripped.startswith("`"):
            return stripped
        if "." in stripped:
            return stripped
        return self._qualified_identifier(stripped)

    # ---- SQL hooks ----
    def _this_identifier(self, node: Node) -> str:
        """
        Ensure {{ this }} renders as a fully-qualified identifier so BigQuery
        incremental SQL (e.g., subqueries against {{ this }}) includes project
        and dataset.
        """
        return self._qualify_identifier(relation_for(node.name))

    def _apply_sql_materialization(
        self,
        node: Node,
        target_sql: str,
        select_body: str,
        materialization: str,
    ) -> None:
        self._ensure_dataset()
        try:
            super()._apply_sql_materialization(node, target_sql, select_body, materialization)
        except BadRequest as e:
            raise RuntimeError(
                f"BigQuery SQL failed for {target_sql}:\n{select_body}\n\n{e}"
            ) from e

    def _create_or_replace_view(self, target_sql: str, select_body: str, node: Node) -> None:
        self._execute_sql_basic(f"CREATE OR REPLACE VIEW {target_sql} AS {select_body}").result()

    def _create_or_replace_table(self, target_sql: str, select_body: str, node: Node) -> None:
        self._execute_sql(f"CREATE OR REPLACE TABLE {target_sql} AS {select_body}").result()

    def _create_or_replace_view_from_table(
        self,
        view_name: str,
        backing_table: str,
        node: Node,
    ) -> None:
        view_id = self._qualified_identifier(view_name)
        back_id = self._qualified_identifier(backing_table)
        self._ensure_dataset()
        self._execute_sql_basic(
            f"CREATE OR REPLACE VIEW {view_id} AS SELECT * FROM {back_id}"
        ).result()

    # ---- Meta hook ----
    def on_node_built(self, node: Node, relation: str, fingerprint: str) -> None:
        """
        Write/update dataset._ff_meta after a successful build.
        Both pandas + BigFrames executors use the logical engine key 'bigquery'.
        """
        ensure_meta_table(self)
        upsert_meta(self, node.name, relation, fingerprint, "bigquery")

    # ── Incremental API (shared across BigQuery executors) ───────────────
    def exists_relation(self, relation: str) -> bool:
        """
        Check presence in INFORMATION_SCHEMA for tables/views.
        """
        proj = self.project
        dset = self.dataset
        rel = relation
        q = f"""
        SELECT 1
        FROM `{proj}.{dset}.INFORMATION_SCHEMA.TABLES`
        WHERE LOWER(table_name)=LOWER(@rel)
        UNION ALL
        SELECT 1
        FROM `{proj}.{dset}.INFORMATION_SCHEMA.VIEWS`
        WHERE LOWER(table_name)=LOWER(@rel)
        LIMIT 1
        """
        job = self.client.query(
            q,
            job_config=bigquery.QueryJobConfig(
                query_parameters=[bigquery.ScalarQueryParameter("rel", "STRING", rel)]
            ),
            location=self.location,
        )
        return bool(list(job.result()))

    def create_table_as(self, relation: str, select_sql: str) -> None:
        """
        CREATE TABLE AS with cleaned SELECT body (no trailing semicolons).
        """
        self._ensure_dataset()
        body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
        target = self._qualified_identifier(
            relation,
            project=self.project,
            dataset=self.dataset,
        )
        self._execute_sql(f"CREATE TABLE {target} AS {body}").result()

    def incremental_insert(self, relation: str, select_sql: str) -> None:
        """
        INSERT INTO with cleaned SELECT body.
        """
        self._ensure_dataset()
        body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
        target = self._qualified_identifier(
            relation,
            project=self.project,
            dataset=self.dataset,
        )
        self._execute_sql(f"INSERT INTO {target} {body}").result()

    def incremental_merge(self, relation: str, select_sql: str, unique_key: list[str]) -> None:
        """
        Portable fallback without native MERGE:
          - DELETE collisions via WHERE EXISTS against the cleaned SELECT body
          - INSERT new rows from the same body
        """
        self._ensure_dataset()
        body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
        target = self._qualified_identifier(
            relation,
            project=self.project,
            dataset=self.dataset,
        )
        pred = " AND ".join([f"t.{k}=s.{k}" for k in unique_key]) or "FALSE"

        delete_sql = f"""
        DELETE FROM {target} t
        WHERE EXISTS (SELECT 1 FROM ({body}) s WHERE {pred})
        """
        self._execute_sql(delete_sql).result()

        insert_sql = f"INSERT INTO {target} SELECT * FROM ({body})"
        self._execute_sql(insert_sql).result()

    def alter_table_sync_schema(
        self,
        relation: str,
        select_sql: str,
        *,
        mode: str = "append_new_columns",
    ) -> None:
        """
        Best-effort additive schema sync:
          - infer select schema via LIMIT 0 query
          - add missing columns as NULLABLE using inferred BigQuery types
        """
        if mode not in {"append_new_columns", "sync_all_columns"}:
            return
        self._ensure_dataset()

        body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")

        # Infer schema using a no-row query (lets BigQuery type the expressions)
        probe = self.client.query(
            f"SELECT * FROM ({body}) WHERE 1=0",
            job_config=bigquery.QueryJobConfig(dry_run=False, use_query_cache=False),
            location=self.location,
        )
        probe.result()
        out_fields = {f.name: f for f in (probe.schema or [])}

        # Existing table schema
        table_ref = f"{self.project}.{self.dataset}.{relation}"
        try:
            tbl = self.client.get_table(table_ref)
        except NotFound:
            return
        existing_cols = {f.name for f in (tbl.schema or [])}

        to_add = [name for name in out_fields if name not in existing_cols]
        if not to_add:
            return

        target = self._qualified_identifier(
            relation,
            project=self.project,
            dataset=self.dataset,
        )
        for col in to_add:
            f = out_fields[col]
            typ = str(f.field_type) if hasattr(f, "field_type") else "STRING"
            self._execute_sql_basic(f"ALTER TABLE {target} ADD COLUMN {col} {typ}").result()

    # ── Snapshots API (shared for pandas + BigFrames) ─────────────────────

    def execute_hook_sql(self, sql: str) -> None:
        """
        Execute one SQL statement for pre/post/on_run hooks.
        """
        self._execute_sql(sql).result()

    # ---- Snapshot runtime delegation (shared for pandas + BigFrames) ----
    def run_snapshot_sql(self, node: Node, env: Any) -> None:
        self.snapshot_runtime.run_snapshot_sql(node, env)

    def snapshot_prune(
        self,
        relation: str,
        unique_key: list[str],
        keep_last: int,
        *,
        dry_run: bool = False,
    ) -> None:
        self.snapshot_runtime.snapshot_prune(
            relation,
            unique_key,
            keep_last,
            dry_run=dry_run,
        )

    def _introspect_columns_metadata(
        self,
        table: str,
        *,
        column: str | None = None,
    ) -> list[tuple[str, str]]:
        """
        Internal helper: return [(column_name_lower, data_type_upper), ...]
        for a BigQuery table using INFORMATION_SCHEMA.COLUMNS.

        Accepts:
          - `table` as "table" or "dataset.table" or "project.dataset.table"
          - optional `column` to restrict to a single column
        """
        project = self.project
        dataset = self.dataset
        table_name = table

        parts = table.split(".")
        if len(parts) == 3:
            project, dataset, table_name = parts
        elif len(parts) == 2:
            dataset, table_name = parts

        table_name = table_name.strip("`")
        dataset = dataset.strip("`") if dataset else dataset
        project = project.strip("`") if project else project

        if not table_name:
            return []

        where = ["lower(table_name) = lower(@t)"]
        params = [bigquery.ScalarQueryParameter("t", "STRING", table_name)]

        if column is not None:
            where.append("lower(column_name) = lower(@c)")
            params.append(bigquery.ScalarQueryParameter("c", "STRING", column))

        sql = f"""
        select lower(column_name) as column_name, upper(data_type) as data_type
        from `{project}.{dataset}.INFORMATION_SCHEMA.COLUMNS`
        where {" and ".join(where)}
        order by ordinal_position
        """

        job = self.client.query(
            sql,
            job_config=bigquery.QueryJobConfig(
                query_parameters=params,
                default_dataset=bigquery.DatasetReference(project, dataset),
            ),
            location=self.location,
        )
        rows = list(job.result())
        return [(str(r[0]), str(r[1])) for r in rows]

    def introspect_column_physical_type(self, table: str, column: str) -> str | None:
        rows = self._introspect_columns_metadata(table, column=column)
        return rows[0][1] if rows else None

    def introspect_table_physical_schema(self, table: str) -> dict[str, str]:
        rows = self._introspect_columns_metadata(table, column=None)
        # keys are lowercased to match the DuckRuntimeContracts verify logic
        return {name: dtype for (name, dtype) in rows}

    def collect_docs_columns(self) -> dict[str, list[ColumnInfo]]:
        """
        Column metadata for docs (project+dataset scoped).
        """
        sql = f"""
        select table_name, column_name, data_type, is_nullable
        from `{self.project}.{self.dataset}.INFORMATION_SCHEMA.COLUMNS`
        order by table_name, ordinal_position
        """
        try:
            job = self.client.query(
                sql,
                job_config=bigquery.QueryJobConfig(
                    default_dataset=bigquery.DatasetReference(self.project, self.dataset)
                ),
                location=self.location,
            )
            rows = list(job.result())
        except Exception:
            return {}

        out: dict[str, list[ColumnInfo]] = {}
        for row in rows:
            table = str(row["table_name"])
            col = str(row["column_name"])
            dtype = str(row["data_type"])
            nullable = str(row["is_nullable"]).upper() == "YES"
            out.setdefault(table, []).append(ColumnInfo(col, dtype, nullable))
        return out

    def load_seed(self, table: str, df: Any, schema: str | None = None) -> tuple[bool, str, bool]:
        dataset_id = schema or self.dataset

        table_id = self._qualified_api_identifier(
            table,
            project=self.project,
            dataset=dataset_id,
        )
        full_name = table_id
        self._ensure_dataset()

        job_config = bigquery.LoadJobConfig(
            write_disposition=bigquery.WriteDisposition.WRITE_TRUNCATE
        )

        load_job = self.client.load_table_from_dataframe(df, table_id, job_config=job_config)
        load_job.result()

        return True, full_name, False

execute_test_sql

execute_test_sql(stmt)

Execute lightweight SQL for DQ tests using the BigQuery client.

Source code in src/fastflowtransform/executors/bigquery/base.py
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
def execute_test_sql(self, stmt: Any) -> Any:
    """
    Execute lightweight SQL for DQ tests using the BigQuery client.
    """

    def _infer_param_type(value: Any) -> str:
        if isinstance(value, bool):
            return "BOOL"
        if isinstance(value, int) and not isinstance(value, bool):
            return "INT64"
        if isinstance(value, float):
            return "FLOAT64"
        return "STRING"

    def _run_job(sql: str, params: dict[str, Any] | None = None) -> Any:
        job_config = bigquery.QueryJobConfig()
        if self.dataset:
            job_config.default_dataset = bigquery.DatasetReference(self.project, self.dataset)
        if params:
            job_config.query_parameters = [
                bigquery.ScalarQueryParameter(k, _infer_param_type(v), v)
                for k, v in params.items()
            ]
        return self.client.query(sql, job_config=job_config, location=self.location)

    def _run_one(s: Any) -> Any:
        statement_len = 2
        if (
            isinstance(s, tuple)
            and len(s) == statement_len
            and isinstance(s[0], str)
            and isinstance(s[1], dict)
        ):
            return _run_job(s[0], s[1]).result()
        if isinstance(s, str):
            # Use guarded execution path for simple statements
            return self._execute_sql(s).result()
        if isinstance(s, Iterable) and not isinstance(s, (bytes, bytearray, str)):
            res = None
            for item in s:
                res = _run_one(item)
            return res
        return _run_job(str(s)).result()

    return make_fetchable(_run_one(stmt))

on_node_built

on_node_built(node, relation, fingerprint)

Write/update dataset._ff_meta after a successful build. Both pandas + BigFrames executors use the logical engine key 'bigquery'.

Source code in src/fastflowtransform/executors/bigquery/base.py
271
272
273
274
275
276
277
def on_node_built(self, node: Node, relation: str, fingerprint: str) -> None:
    """
    Write/update dataset._ff_meta after a successful build.
    Both pandas + BigFrames executors use the logical engine key 'bigquery'.
    """
    ensure_meta_table(self)
    upsert_meta(self, node.name, relation, fingerprint, "bigquery")

exists_relation

exists_relation(relation)

Check presence in INFORMATION_SCHEMA for tables/views.

Source code in src/fastflowtransform/executors/bigquery/base.py
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
def exists_relation(self, relation: str) -> bool:
    """
    Check presence in INFORMATION_SCHEMA for tables/views.
    """
    proj = self.project
    dset = self.dataset
    rel = relation
    q = f"""
    SELECT 1
    FROM `{proj}.{dset}.INFORMATION_SCHEMA.TABLES`
    WHERE LOWER(table_name)=LOWER(@rel)
    UNION ALL
    SELECT 1
    FROM `{proj}.{dset}.INFORMATION_SCHEMA.VIEWS`
    WHERE LOWER(table_name)=LOWER(@rel)
    LIMIT 1
    """
    job = self.client.query(
        q,
        job_config=bigquery.QueryJobConfig(
            query_parameters=[bigquery.ScalarQueryParameter("rel", "STRING", rel)]
        ),
        location=self.location,
    )
    return bool(list(job.result()))

create_table_as

create_table_as(relation, select_sql)

CREATE TABLE AS with cleaned SELECT body (no trailing semicolons).

Source code in src/fastflowtransform/executors/bigquery/base.py
306
307
308
309
310
311
312
313
314
315
316
317
def create_table_as(self, relation: str, select_sql: str) -> None:
    """
    CREATE TABLE AS with cleaned SELECT body (no trailing semicolons).
    """
    self._ensure_dataset()
    body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
    target = self._qualified_identifier(
        relation,
        project=self.project,
        dataset=self.dataset,
    )
    self._execute_sql(f"CREATE TABLE {target} AS {body}").result()

incremental_insert

incremental_insert(relation, select_sql)

INSERT INTO with cleaned SELECT body.

Source code in src/fastflowtransform/executors/bigquery/base.py
319
320
321
322
323
324
325
326
327
328
329
330
def incremental_insert(self, relation: str, select_sql: str) -> None:
    """
    INSERT INTO with cleaned SELECT body.
    """
    self._ensure_dataset()
    body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
    target = self._qualified_identifier(
        relation,
        project=self.project,
        dataset=self.dataset,
    )
    self._execute_sql(f"INSERT INTO {target} {body}").result()

incremental_merge

incremental_merge(relation, select_sql, unique_key)
Portable fallback without native MERGE
  • DELETE collisions via WHERE EXISTS against the cleaned SELECT body
  • INSERT new rows from the same body
Source code in src/fastflowtransform/executors/bigquery/base.py
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
def incremental_merge(self, relation: str, select_sql: str, unique_key: list[str]) -> None:
    """
    Portable fallback without native MERGE:
      - DELETE collisions via WHERE EXISTS against the cleaned SELECT body
      - INSERT new rows from the same body
    """
    self._ensure_dataset()
    body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")
    target = self._qualified_identifier(
        relation,
        project=self.project,
        dataset=self.dataset,
    )
    pred = " AND ".join([f"t.{k}=s.{k}" for k in unique_key]) or "FALSE"

    delete_sql = f"""
    DELETE FROM {target} t
    WHERE EXISTS (SELECT 1 FROM ({body}) s WHERE {pred})
    """
    self._execute_sql(delete_sql).result()

    insert_sql = f"INSERT INTO {target} SELECT * FROM ({body})"
    self._execute_sql(insert_sql).result()

alter_table_sync_schema

alter_table_sync_schema(relation, select_sql, *, mode='append_new_columns')
Best-effort additive schema sync
  • infer select schema via LIMIT 0 query
  • add missing columns as NULLABLE using inferred BigQuery types
Source code in src/fastflowtransform/executors/bigquery/base.py
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
def alter_table_sync_schema(
    self,
    relation: str,
    select_sql: str,
    *,
    mode: str = "append_new_columns",
) -> None:
    """
    Best-effort additive schema sync:
      - infer select schema via LIMIT 0 query
      - add missing columns as NULLABLE using inferred BigQuery types
    """
    if mode not in {"append_new_columns", "sync_all_columns"}:
        return
    self._ensure_dataset()

    body = self._selectable_body(select_sql).strip().rstrip(";\n\t ")

    # Infer schema using a no-row query (lets BigQuery type the expressions)
    probe = self.client.query(
        f"SELECT * FROM ({body}) WHERE 1=0",
        job_config=bigquery.QueryJobConfig(dry_run=False, use_query_cache=False),
        location=self.location,
    )
    probe.result()
    out_fields = {f.name: f for f in (probe.schema or [])}

    # Existing table schema
    table_ref = f"{self.project}.{self.dataset}.{relation}"
    try:
        tbl = self.client.get_table(table_ref)
    except NotFound:
        return
    existing_cols = {f.name for f in (tbl.schema or [])}

    to_add = [name for name in out_fields if name not in existing_cols]
    if not to_add:
        return

    target = self._qualified_identifier(
        relation,
        project=self.project,
        dataset=self.dataset,
    )
    for col in to_add:
        f = out_fields[col]
        typ = str(f.field_type) if hasattr(f, "field_type") else "STRING"
        self._execute_sql_basic(f"ALTER TABLE {target} ADD COLUMN {col} {typ}").result()

execute_hook_sql

execute_hook_sql(sql)

Execute one SQL statement for pre/post/on_run hooks.

Source code in src/fastflowtransform/executors/bigquery/base.py
407
408
409
410
411
def execute_hook_sql(self, sql: str) -> None:
    """
    Execute one SQL statement for pre/post/on_run hooks.
    """
    self._execute_sql(sql).result()

collect_docs_columns

collect_docs_columns()

Column metadata for docs (project+dataset scoped).

Source code in src/fastflowtransform/executors/bigquery/base.py
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
def collect_docs_columns(self) -> dict[str, list[ColumnInfo]]:
    """
    Column metadata for docs (project+dataset scoped).
    """
    sql = f"""
    select table_name, column_name, data_type, is_nullable
    from `{self.project}.{self.dataset}.INFORMATION_SCHEMA.COLUMNS`
    order by table_name, ordinal_position
    """
    try:
        job = self.client.query(
            sql,
            job_config=bigquery.QueryJobConfig(
                default_dataset=bigquery.DatasetReference(self.project, self.dataset)
            ),
            location=self.location,
        )
        rows = list(job.result())
    except Exception:
        return {}

    out: dict[str, list[ColumnInfo]] = {}
    for row in rows:
        table = str(row["table_name"])
        col = str(row["column_name"])
        dtype = str(row["data_type"])
        nullable = str(row["is_nullable"]).upper() == "YES"
        out.setdefault(table, []).append(ColumnInfo(col, dtype, nullable))
    return out

configure_contracts

configure_contracts(contracts, project_contracts)

Inject parsed contracts into this executor instance. The run engine should call this once at startup.

Source code in src/fastflowtransform/executors/base.py
148
149
150
151
152
153
154
155
156
157
158
def configure_contracts(
    self,
    contracts: Mapping[str, ContractsFileModel] | None,
    project_contracts: ProjectContractsModel | None,
) -> None:
    """
    Inject parsed contracts into this executor instance.
    The run engine should call this once at startup.
    """
    self._ff_contracts = contracts or {}
    self._ff_project_contracts = project_contracts

run_sql

run_sql(node, env)
Orchestrate SQL models

1) Render Jinja (ref/source/this) and strip leading {{ config(...) }}. 2) If the SQL is full DDL (CREATE …), execute it verbatim (passthrough). 3) Otherwise, normalize to CREATE OR REPLACE {TABLE|VIEW} AS . The body is CTE-aware (keeps WITH … SELECT … intact).

On failure, raise ModelExecutionError with a helpful snippet.

Source code in src/fastflowtransform/executors/base.py
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
def run_sql(self, node: Node, env: Environment) -> None:
    """
    Orchestrate SQL models:
      1) Render Jinja (ref/source/this) and strip leading {{ config(...) }}.
      2) If the SQL is full DDL (CREATE …), execute it verbatim (passthrough).
      3) Otherwise, normalize to CREATE OR REPLACE {TABLE|VIEW} AS <body>.
         The body is CTE-aware (keeps WITH … SELECT … intact).
    On failure, raise ModelExecutionError with a helpful snippet.
    """
    meta = getattr(node, "meta", {}) or {}
    if self._meta_is_incremental(meta):
        # Delegates to incremental engine: render, schema sync, merge/insert, etc.
        return _ff_incremental.run_or_dispatch(self, node, env)

    if self._meta_is_snapshot(meta):
        # Snapshots are executed via the dedicated CLI: `fft snapshot run`.
        raise ModelExecutionError(
            node_name=node.name,
            relation=relation_for(node.name),
            message=(
                "Snapshot models cannot be executed via 'fft run'. "
                "Use 'fft snapshot run' instead."
            ),
            sql_snippet="",
        )

    sql_rendered = self.render_sql(
        node,
        env,
        ref_resolver=lambda name: self._resolve_ref(name, env),
        source_resolver=self._resolve_source,
    )
    sql = self._strip_leading_config(sql_rendered).strip()

    materialization = (node.meta or {}).get("materialized", "table")
    if materialization == "ephemeral":
        return

    # 1) Direct DDL passthrough (CREATE [OR REPLACE] {TABLE|VIEW} …)
    if self._looks_like_direct_ddl(sql):
        try:
            self._execute_sql_direct(sql, node)
            return
        except NotImplementedError:
            # Engine doesn't implement direct DDL → fall back to normalized materialization.
            pass
        except Exception as e:
            raise ModelExecutionError(
                node_name=node.name,
                relation=relation_for(node.name),
                message=str(e),
                sql_snippet=sql,
            ) from e

    # 2) Normalized materialization path (CTE-safe body)
    body = self._selectable_body(sql).rstrip(" ;\n\t")
    target_sql = self._format_relation_for_ref(node.name)

    # Centralized SQL preview logging (applies to ALL engines)
    preview = (
        f"=== MATERIALIZE ===\n"
        f"-- model: {node.name}\n"
        f"-- materialized: {materialization}\n"
        f"-- target: {target_sql}\n"
        f"{body}\n"
    )
    echo_debug(preview)

    try:
        runtime = getattr(self, "runtime_contracts", None)
        # contracts only for TABLE materialization for now
        if runtime is not None and materialization == "table":
            contracts = getattr(self, "_ff_contracts", {}) or {}
            project_contracts = getattr(self, "_ff_project_contracts", None)

            # keying: prefer the logical table name (contracts.table),
            # but node.name or relation_for(node.name) is usually what you want.
            logical_name = relation_for(node.name)
            contract = contracts.get(logical_name) or contracts.get(node.name)

            ctx = runtime.build_context(
                node=node,
                relation=logical_name,
                physical_table=target_sql,
                contract=contract,
                project_contracts=project_contracts,
                is_incremental=self._meta_is_incremental(meta),
            )
            # Engine-specific enforcement (verify/cast/off)
            runtime.apply_sql_contracts(ctx=ctx, select_body=body)
        else:
            # Old behavior
            self._apply_sql_materialization(node, target_sql, body, materialization)
    except Exception as e:
        preview = f"-- materialized={materialization}\n-- target={target_sql}\n{body}"
        raise ModelExecutionError(
            node_name=node.name,
            relation=relation_for(node.name),
            message=str(e),
            sql_snippet=preview,
        ) from e

configure_query_budget_limit

configure_query_budget_limit(limit)

Inject a configured per-query byte limit (e.g. from budgets.yml).

Source code in src/fastflowtransform/executors/base.py
575
576
577
578
579
580
581
582
583
584
585
586
587
def configure_query_budget_limit(self, limit: int | None) -> None:
    """
    Inject a configured per-query byte limit (e.g. from budgets.yml).
    """
    if limit is None:
        self._ff_configured_query_limit = None
        return
    try:
        iv = int(limit)
    except Exception:
        self._ff_configured_query_limit = None
        return
    self._ff_configured_query_limit = iv if iv > 0 else None

reset_node_stats

reset_node_stats()

Reset per-node statistics buffer.

The run engine calls this before executing a model so that all stats recorded via _record_query_stats(...) belong to that node.

Source code in src/fastflowtransform/executors/base.py
627
628
629
630
631
632
633
634
635
def reset_node_stats(self) -> None:
    """
    Reset per-node statistics buffer.

    The run engine calls this before executing a model so that all
    stats recorded via `_record_query_stats(...)` belong to that node.
    """
    # just clear the buffer; next recording will re-create it
    self._ff_query_stats_buffer = []

get_node_stats

get_node_stats()

Aggregate buffered QueryStats into a simple dict:

{
  "bytes_scanned": <sum>,
  "rows": <sum>,
  "query_duration_ms": <sum>,
}

Called by the run engine after a node finishes.

Source code in src/fastflowtransform/executors/base.py
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
def get_node_stats(self) -> dict[str, int]:
    """
    Aggregate buffered QueryStats into a simple dict:

        {
          "bytes_scanned": <sum>,
          "rows": <sum>,
          "query_duration_ms": <sum>,
        }

    Called by the run engine after a node finishes.
    """
    stats_list = self._drain_query_stats()
    if not stats_list:
        return {}

    total_bytes = 0
    total_rows = 0
    total_duration = 0

    for s in stats_list:
        if s.bytes_processed is not None:
            total_bytes += int(s.bytes_processed)
        if s.rows is not None:
            total_rows += int(s.rows)
        if s.duration_ms is not None:
            total_duration += int(s.duration_ms)

    return {
        "bytes_scanned": total_bytes,
        "rows": total_rows,
        "query_duration_ms": total_duration,
    }

run_python

run_python(node)

Execute the Python model for a given node and materialize its result.

Source code in src/fastflowtransform/executors/base.py
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
def run_python(self, node: Node) -> None:
    """Execute the Python model for a given node and materialize its result."""
    func = REGISTRY.py_funcs[node.name]
    deps = REGISTRY.nodes[node.name].deps or []

    self._reset_http_ctx(node)

    args, argmap = self._build_python_inputs(node, deps)
    requires = REGISTRY.py_requires.get(node.name, {})
    if deps:
        # Required-columns check works against the mapping
        self._validate_required(node.name, argmap, requires)

    # out = self._execute_python_func(func, arg, node)
    out = self._execute_python_func(func, args, node)

    target = relation_for(node.name)
    meta = getattr(node, "meta", {}) or {}
    mat = self._resolve_materialization_strategy(meta)

    # ---------- Runtime contracts for Python models ----------
    runtime = getattr(self, "runtime_contracts", None)
    ctx = None
    took_over = False

    if runtime is not None:
        contracts = getattr(self, "_ff_contracts", {}) or {}
        project_contracts = getattr(self, "_ff_project_contracts", None)

        logical = target  # usually relation_for(node.name)
        contract = contracts.get(logical) or contracts.get(node.name)

        if contract is not None or project_contracts is not None:
            physical_table = self._format_relation_for_ref(node.name)
            ctx = runtime.build_context(
                node=node,
                relation=logical,
                physical_table=physical_table,
                contract=contract,
                project_contracts=project_contracts,
                is_incremental=(mat == "incremental"),
            )

            # Optional pre-coercion (default is no-op).
            if hasattr(runtime, "coerce_frame_schema"):
                out = runtime.coerce_frame_schema(out, ctx)

            # Allow engine-specific runtime to take over Python materialization
            if mat == "table" and hasattr(runtime, "materialize_python"):
                took_over = bool(runtime.materialize_python(ctx=ctx, df=out))

    # ---------- Materialization ----------
    if not took_over:
        if mat == "incremental":
            self._materialize_incremental(target, out, node, meta)
        elif mat == "view":
            self._materialize_view(target, out, node)
        else:
            self._materialize_relation(target, out, node)

    if ctx is not None and runtime is not None:
        runtime.verify_after_materialization(ctx=ctx)

    self._snapshot_http_ctx(node)

utest_load_relation_from_rows

utest_load_relation_from_rows(relation, rows)

Load test input rows into a physical relation for unit tests.

Default: not implemented. Engines that support fft utest should override.

Source code in src/fastflowtransform/executors/base.py
1150
1151
1152
1153
1154
1155
1156
1157
1158
def utest_load_relation_from_rows(self, relation: str, rows: list[dict]) -> None:
    """
    Load test input rows into a physical relation for unit tests.

    Default: not implemented. Engines that support `fft utest` should override.
    """
    raise NotImplementedError(
        f"utest_load_relation_from_rows not implemented for engine '{self.engine_name}'."
    )

utest_read_relation

utest_read_relation(relation)

Read a physical relation into a pandas.DataFrame for unit-test assertions.

Default: not implemented. Engines that support fft utest should override.

Source code in src/fastflowtransform/executors/base.py
1160
1161
1162
1163
1164
1165
1166
1167
1168
def utest_read_relation(self, relation: str) -> _PDDataFrame:
    """
    Read a physical relation into a pandas.DataFrame for unit-test assertions.

    Default: not implemented. Engines that support `fft utest` should override.
    """
    raise NotImplementedError(
        f"utest_read_relation not implemented for engine '{self.engine_name}'."
    )

utest_clean_target

utest_clean_target(relation)

Best-effort cleanup hook before executing a unit-test model:

  • Drop tables/views with the target name so view<->table flips cannot fail (DuckDB, Postgres, ...).
  • This runs only in fft utest, and we already enforce that utest profiles use isolated DBs/schemas.

Default: no-op.

Source code in src/fastflowtransform/executors/base.py
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
def utest_clean_target(self, relation: str) -> None:
    """
    Best-effort cleanup hook before executing a unit-test model:

    - Drop tables/views with the target name so view<->table flips
      cannot fail (DuckDB, Postgres, ...).
    - This runs *only* in `fft utest`, and we already enforce that
      utest profiles use isolated DBs/schemas.

    Default: no-op.
    """
    return

normalize_physical_type

normalize_physical_type(t)

Canonicalize a physical type string for comparisons (DQ + contracts).

Default: just strip + lower. Engines may override to account for dialect quirks in information_schema (e.g. Postgres timestamp variants, Snowflake VARCHAR(…) / NUMBER(…)).

Source code in src/fastflowtransform/executors/base.py
1197
1198
1199
1200
1201
1202
1203
1204
1205
def normalize_physical_type(self, t: str | None) -> str:
    """
    Canonicalize a physical type string for comparisons (DQ + contracts).

    Default: just strip + lower.
    Engines may override to account for dialect quirks in information_schema
    (e.g. Postgres timestamp variants, Snowflake VARCHAR(…) / NUMBER(…)).
    """
    return (t or "").strip().lower()