Skip to content

fastflowtransform.executors.base

BaseExecutor

Bases: ABC

Shared workflow for SQL rendering and Python models. I/O is frame-agnostic; subclasses provide frame-specific hooks: - _read_relation - _materialize_relation - _validate_required - _columns_of - _is_frame - (optional) _frame_name

Source code in src/fastflowtransform/executors/base.py
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
class BaseExecutor[TFrame](ABC):
    """
    Shared workflow for SQL rendering and Python models.
    I/O is frame-agnostic; subclasses provide frame-specific hooks:
      - _read_relation
      - _materialize_relation
      - _validate_required
      - _columns_of
      - _is_frame
      - (optional) _frame_name
    """

    ENGINE_NAME: str = "generic"

    _ff_contracts: Mapping[str, ContractsFileModel] | None = None
    _ff_project_contracts: ProjectContractsModel | None = None

    @property
    def engine_name(self) -> str:
        return getattr(self, "ENGINE_NAME", "generic")

    def configure_contracts(
        self,
        contracts: Mapping[str, ContractsFileModel] | None,
        project_contracts: ProjectContractsModel | None,
    ) -> None:
        """
        Inject parsed contracts into this executor instance.
        The run engine should call this once at startup.
        """
        self._ff_contracts = contracts or {}
        self._ff_project_contracts = project_contracts

    # ---------- SQL ----------
    def render_sql(
        self,
        node: Node,
        env: Environment,
        ref_resolver: Callable[[str], str] | None = None,
        source_resolver: Callable[[str, str], str] | None = None,
    ) -> str:
        # ---- thread-/task-local config()-hook
        _RENDER_CFG: contextvars.ContextVar[dict[str, Any] | None] = contextvars.ContextVar(
            "_RENDER_CFG", default=None
        )

        def get_render_cfg() -> dict[str, Any]:
            cfg = _RENDER_CFG.get()
            if cfg is None:
                cfg = {}
                _RENDER_CFG.set(cfg)
            return cfg

        def _config_hook(**kwargs: Any) -> str:
            cfg = get_render_cfg()
            cfg.update(kwargs)
            return ""

        if "config" not in env.globals:
            env.globals["config"] = _config_hook

        # ---- var() builtin: CLI overrides > project.yml vars > default
        if "var" not in env.globals:

            def _var(key: str, default: Any = None) -> Any:
                cli = getattr(REGISTRY, "cli_vars", {}) or {}
                if key in cli:
                    return cli[key]
                proj = getattr(REGISTRY, "project_vars", {}) or {}
                if key in proj:
                    return proj[key]
                return default

            env.globals["var"] = _var

        # ---- is_incremental() builtin
        # True iff meta marks the model as incremental AND the target relation exists.
        if "is_incremental" not in env.globals:

            def _is_incremental() -> bool:
                try:
                    meta = getattr(node, "meta", {}) or {}
                    if not self._meta_is_incremental(meta):
                        return False
                    rel = relation_for(node.name)
                    return bool(self.exists_relation(rel))
                except Exception:
                    # Be conservative: if anything is off, treat as non-incremental.
                    return False

            env.globals["is_incremental"] = _is_incremental

        raw = Path(node.path).read_text(encoding="utf-8")
        tmpl = env.from_string(raw)

        def _default_ref(name: str) -> str:
            return relation_for(name)

        def _default_source(source_name: str, table_name: str) -> str:
            group = REGISTRY.sources.get(source_name)
            if not group:
                raise KeyError(f"Unknown source {source_name}.{table_name}")
            entry = group.get(table_name)
            if not entry:
                raise KeyError(f"Unknown source {source_name}.{table_name}")
            cfg = resolve_source_entry(entry, self.engine_name, default_identifier=table_name)
            if cfg.get("location"):
                raise KeyError(
                    "Path-based sources require executor context; "
                    "default resolver cannot handle them."
                )
            identifier = cfg.get("identifier")
            if not identifier:
                raise KeyError(f"Source {source_name}.{table_name} missing identifier")
            return identifier

        _RENDER_CFG.set({})

        # expose 'this' to the template: Proxy-Objekt, das wie String wirkt
        this_obj = _ThisProxy(
            self._this_identifier(node),
            (getattr(node, "meta", {}) or {}).get("materialized", "table"),
            getattr(self, "schema", None) or getattr(self, "dataset", None),
            getattr(self, "database", None) or getattr(self, "project", None),
        )

        sql = tmpl.render(
            ref=ref_resolver or _default_ref,
            source=source_resolver or _default_source,
            this=this_obj,
        )

        cfg = _RENDER_CFG.get()
        if cfg:
            for k, v in cfg.items():
                node.meta.setdefault(k, v)
        return sql

    def run_sql(self, node: Node, env: Environment) -> None:
        """
        Orchestrate SQL models:
          1) Render Jinja (ref/source/this) and strip leading {{ config(...) }}.
          2) If the SQL is full DDL (CREATE …), execute it verbatim (passthrough).
          3) Otherwise, normalize to CREATE OR REPLACE {TABLE|VIEW} AS <body>.
             The body is CTE-aware (keeps WITH … SELECT … intact).
        On failure, raise ModelExecutionError with a helpful snippet.
        """
        meta = getattr(node, "meta", {}) or {}
        if self._meta_is_incremental(meta):
            # Delegates to incremental engine: render, schema sync, merge/insert, etc.
            return _ff_incremental.run_or_dispatch(self, node, env)

        if self._meta_is_snapshot(meta):
            # Snapshots are executed via the dedicated CLI: `fft snapshot run`.
            raise ModelExecutionError(
                node_name=node.name,
                relation=relation_for(node.name),
                message=(
                    "Snapshot models cannot be executed via 'fft run'. "
                    "Use 'fft snapshot run' instead."
                ),
                sql_snippet="",
            )

        sql_rendered = self.render_sql(
            node,
            env,
            ref_resolver=lambda name: self._resolve_ref(name, env),
            source_resolver=self._resolve_source,
        )
        sql = self._strip_leading_config(sql_rendered).strip()

        materialization = (node.meta or {}).get("materialized", "table")
        if materialization == "ephemeral":
            return

        # 1) Direct DDL passthrough (CREATE [OR REPLACE] {TABLE|VIEW} …)
        if self._looks_like_direct_ddl(sql):
            try:
                self._execute_sql_direct(sql, node)
                return
            except NotImplementedError:
                # Engine doesn't implement direct DDL → fall back to normalized materialization.
                pass
            except Exception as e:
                raise ModelExecutionError(
                    node_name=node.name,
                    relation=relation_for(node.name),
                    message=str(e),
                    sql_snippet=sql,
                ) from e

        # 2) Normalized materialization path (CTE-safe body)
        body = self._selectable_body(sql).rstrip(" ;\n\t")
        target_sql = self._format_relation_for_ref(node.name)

        # Centralized SQL preview logging (applies to ALL engines)
        preview = (
            f"=== MATERIALIZE ===\n"
            f"-- model: {node.name}\n"
            f"-- materialized: {materialization}\n"
            f"-- target: {target_sql}\n"
            f"{body}\n"
        )
        echo_debug(preview)

        try:
            runtime = getattr(self, "runtime_contracts", None)
            # contracts only for TABLE materialization for now
            if runtime is not None and materialization == "table":
                contracts = getattr(self, "_ff_contracts", {}) or {}
                project_contracts = getattr(self, "_ff_project_contracts", None)

                # keying: prefer the logical table name (contracts.table),
                # but node.name or relation_for(node.name) is usually what you want.
                logical_name = relation_for(node.name)
                contract = contracts.get(logical_name) or contracts.get(node.name)

                ctx = runtime.build_context(
                    node=node,
                    relation=logical_name,
                    physical_table=target_sql,
                    contract=contract,
                    project_contracts=project_contracts,
                    is_incremental=self._meta_is_incremental(meta),
                )
                # Engine-specific enforcement (verify/cast/off)
                runtime.apply_sql_contracts(ctx=ctx, select_body=body)
            else:
                # Old behavior
                self._apply_sql_materialization(node, target_sql, body, materialization)
        except Exception as e:
            preview = f"-- materialized={materialization}\n-- target={target_sql}\n{body}"
            raise ModelExecutionError(
                node_name=node.name,
                relation=relation_for(node.name),
                message=str(e),
                sql_snippet=preview,
            ) from e

    def run_snapshot_sql(self, node: Node, env: Environment) -> None:
        """
        Execute a SQL model materialized as 'snapshot'.

        Default implementation: engines must override this or snapshots
        will fail with a clear error.
        """
        raise NotImplementedError(
            f"Snapshot materialization is not implemented for engine '{self.engine_name}'."
        )

    # --- Helpers for materialization & ephemeral inlining (instance methods) ---
    def _first_select_body(self, sql: str) -> str:
        """
        Fallback: extract the substring starting at the first SELECT token.
        If no SELECT is found, return the original string unchanged.
        Prefer using _selectable_body() which is CTE-aware.
        """
        m = re.search(r"\bselect\b", sql, flags=re.I | re.S)
        return sql[m.start() :] if m else sql

    def _strip_leading_config(self, sql: str) -> str:
        """
        Remove a leading Jinja {{ config(...) }} so the engine receives clean SQL.
        """
        return re.sub(
            r"^\s*\{\{\s*config\s*\(.*?\)\s*\}\}\s*",
            "",
            sql,
            flags=re.I | re.S,
        )

    def _strip_leading_sql_comments(self, sql: str) -> tuple[str, int]:
        """
        Remove *only* leading SQL comments and blank lines, return (trimmed_sql, start_idx).

        Supports:
          -- single line comments
          /* block comments */
        """
        # Match chain of: whitespace, comment, whitespace, comment, ...
        # Using DOTALL so block comments spanning lines are handled.
        pat = re.compile(
            r"""^\s*(?:
                                --[^\n]*\n        # line comment
                              | /\*.*?\*/\s*      # block comment
                             )*""",
            re.VERBOSE | re.DOTALL,
        )
        m = pat.match(sql)
        start = m.end() if m else 0
        return sql[start:], start

    def _selectable_body(self, sql: str) -> str:
        """
        Normalize a SELECT/CTE body:

        - Strip leading SQL comments/blank lines.
        - Find the first WITH or SELECT keyword (as a word) anywhere in the statement.
        - Return from that keyword onward, stripping trailing semicolons/whitespace.

        This works for:
        * plain SELECT
        * WITH ... (CTEs)
        * CREATE TABLE/VIEW ... AS WITH ...
        * CREATE TABLE/VIEW ... AS SELECT ...
        * INSERT INTO ... SELECT ...
        """
        s0 = sql or ""

        # Strip leading comments; s starts at 'offset' in the original string.
        s, offset = self._strip_leading_sql_comments(s0)
        s_ws = s.lstrip()

        # Find first WITH or SELECT as a whole word (case-insensitive)
        m = re.search(r"\b(with|select)\b", s_ws, flags=re.IGNORECASE)
        if not m:
            # No obvious SELECT/CTE - just return the statement minus trailing semicolons.
            return s0.strip().rstrip(";\n\t ")

        # m.start() is index within s_ws. Need to map back into the original sql.
        leading_ws_len = len(s) - len(s_ws)  # spaces we lstripped
        start_in_s = leading_ws_len + m.start()
        start_in_sql = offset + start_in_s

        body = s0[start_in_sql:]
        # Strip trailing semicolons and whitespace
        return body.strip().rstrip(";\n\t ")

    def _looks_like_direct_ddl(self, sql: str) -> bool:
        """
        True if the rendered SQL starts with CREATE (TABLE|VIEW) so it should be
        executed verbatim as a user-provided DDL statement.
        """
        head = sql.lstrip().lower()
        return (
            head.startswith("create table")
            or head.startswith("create view")
            or head.startswith("create or replace")
        )

    def _execute_sql_direct(self, sql: str, node: Node) -> None:
        """
        Execute a full CREATE … statement as-is. Default: use `self.con.execute(sql)`.
        Engines can override this for custom dispatch. If not available, raise
        NotImplementedError so the caller can fall back to normalized materialization.
        """
        con = getattr(self, "con", None)
        if con is None or not hasattr(con, "execute"):
            raise NotImplementedError("Direct DDL execution is not implemented for this executor.")
        con.execute(sql)

    def _execute_sql(
        self, sql: str, *args: Any, **kwargs: Any
    ) -> Any:  # pragma: no cover - abstract
        """
        Engine-specific SQL execution hook used by shared helpers (snapshots, pruning, etc.).
        Concrete executors override this with their own signatures and semantics.
        """
        raise NotImplementedError

    def execute_test_sql(self, stmt: Any) -> Any:  # pragma: no cover - abstract
        """
        Execute a lightweight SQL statement for DQ tests.

        Implementations should accept:
          - str
          - (str, params dict)
          - ClauseElement (optional, where supported)
          - Sequence of the above (executed sequentially; return last result)
        and return an object supporting .fetchone() / .fetchall().
        """
        raise NotImplementedError

    def compute_freshness_delay_minutes(self, table: str, ts_col: str) -> tuple[float | None, str]:
        """
        Compute delay in minutes between now and max(ts_col) for a relation.

        Returns (delay_minutes, sql_used).
        Default implementation is not provided; executors implement engine-specific logic.
        """
        raise NotImplementedError

    def _render_ephemeral_sql(self, name: str, env: Environment) -> str:
        """
        Render the SQL for an 'ephemeral' model and return it as a parenthesized
        subquery. This is CTE-safe: we keep the full WITH…SELECT… statement and
        only strip the leading {{ config(...) }} and trailing semicolons.
        """
        node = REGISTRY.get_node(name) if hasattr(REGISTRY, "get_node") else REGISTRY.nodes[name]

        raw = Path(node.path).read_text(encoding="utf-8")
        tmpl = env.from_string(raw)

        sql = tmpl.render(
            ref=lambda n: self._resolve_ref(n, env),
            source=self._resolve_source,
            this=_ThisProxy(
                self._this_identifier(node),
                (getattr(node, "meta", {}) or {}).get("materialized", "table"),
                getattr(self, "schema", None) or getattr(self, "dataset", None),
                getattr(self, "database", None) or getattr(self, "project", None),
            ),
        )
        # Remove a leading config block and keep the full, CTE-capable statement
        sql = self._strip_leading_config(sql).strip()
        body = self._selectable_body(sql).rstrip(" ;\n\t")
        return f"(\n{body}\n)"

    # ---------- Query stats (per-node, aggregated across queries) ----------

    def _record_query_stats(self, stats: QueryStats) -> None:
        """
        Append per-query stats to an internal buffer.

        Executors call this from their engine-specific recording logic.
        The run engine can later drain this buffer per node.
        """
        buf = getattr(self, "_ff_query_stats_buffer", None)
        if buf is None:
            buf = []
            self._ff_query_stats_buffer = buf
        buf.append(stats)

    def _drain_query_stats(self) -> list[QueryStats]:
        """
        Drain and return the buffered stats, resetting the buffer.

        Used by the run engine around per-node execution.
        """
        buf = getattr(self, "_ff_query_stats_buffer", None)
        if not buf:
            self._ff_query_stats_buffer = []
            return []
        self._ff_query_stats_buffer = []
        return list(buf)

    def _record_query_job_stats(self, job: Any) -> None:
        """
        Best-effort extraction of stats from a 'job-like' object.

        This is intentionally generic; engines that return job handles
        (BigQuery, Snowflake, Spark) can pass them here. Engines can
        override this if they want more precise logic.
        """
        adapter = JobStatsAdapter()
        self._record_query_stats(adapter.collect(job))

    def configure_query_budget_limit(self, limit: int | None) -> None:
        """
        Inject a configured per-query byte limit (e.g. from budgets.yml).
        """
        if limit is None:
            self._ff_configured_query_limit = None
            return
        try:
            iv = int(limit)
        except Exception:
            self._ff_configured_query_limit = None
            return
        self._ff_configured_query_limit = iv if iv > 0 else None

    def _configured_query_limit(self) -> int | None:
        val = getattr(self, "_ff_configured_query_limit", None)
        if val is None:
            return None
        try:
            iv = int(val)
        except Exception:
            return None
        return iv if iv > 0 else None

    def _set_query_budget_estimate(self, estimate: int | None) -> None:
        self._ff_last_query_budget_estimate = estimate

    def _consume_query_budget_estimate(self) -> int | None:
        estimate = getattr(self, "_ff_last_query_budget_estimate", None)
        self._ff_last_query_budget_estimate = None
        return estimate

    def _apply_budget_guard(self, guard: BudgetGuard | None, sql: str) -> int | None:
        if guard is None:
            self._set_query_budget_estimate(None)
            self._ff_budget_guard_active = False
            return None
        limit, source = guard.resolve_limit(self._configured_query_limit())
        if not limit:
            self._set_query_budget_estimate(None)
            self._ff_budget_guard_active = False
            return None
        self._ff_budget_guard_active = True
        estimate = guard.enforce(sql, self, limit=limit, source=source)
        self._set_query_budget_estimate(estimate)
        return estimate

    def _is_budget_guard_active(self) -> bool:
        return bool(getattr(self, "_ff_budget_guard_active", False))

    # ---------- Per-node stats API (used by run engine) ----------

    def reset_node_stats(self) -> None:
        """
        Reset per-node statistics buffer.

        The run engine calls this before executing a model so that all
        stats recorded via `_record_query_stats(...)` belong to that node.
        """
        # just clear the buffer; next recording will re-create it
        self._ff_query_stats_buffer = []

    def get_node_stats(self) -> dict[str, int]:
        """
        Aggregate buffered QueryStats into a simple dict:

            {
              "bytes_scanned": <sum>,
              "rows": <sum>,
              "query_duration_ms": <sum>,
            }

        Called by the run engine after a node finishes.
        """
        stats_list = self._drain_query_stats()
        if not stats_list:
            return {}

        total_bytes = 0
        total_rows = 0
        total_duration = 0

        for s in stats_list:
            if s.bytes_processed is not None:
                total_bytes += int(s.bytes_processed)
            if s.rows is not None:
                total_rows += int(s.rows)
            if s.duration_ms is not None:
                total_duration += int(s.duration_ms)

        return {
            "bytes_scanned": total_bytes,
            "rows": total_rows,
            "query_duration_ms": total_duration,
        }

    # ---------- Python models ----------
    def run_python(self, node: Node) -> None:
        """Execute the Python model for a given node and materialize its result."""
        func = REGISTRY.py_funcs[node.name]
        deps = REGISTRY.nodes[node.name].deps or []

        self._reset_http_ctx(node)

        args, argmap = self._build_python_inputs(node, deps)
        requires = REGISTRY.py_requires.get(node.name, {})
        if deps:
            # Required-columns check works against the mapping
            self._validate_required(node.name, argmap, requires)

        # out = self._execute_python_func(func, arg, node)
        out = self._execute_python_func(func, args, node)

        target = relation_for(node.name)
        meta = getattr(node, "meta", {}) or {}
        mat = self._resolve_materialization_strategy(meta)

        # ---------- Runtime contracts for Python models ----------
        runtime = getattr(self, "runtime_contracts", None)
        ctx = None
        took_over = False

        if runtime is not None:
            contracts = getattr(self, "_ff_contracts", {}) or {}
            project_contracts = getattr(self, "_ff_project_contracts", None)

            logical = target  # usually relation_for(node.name)
            contract = contracts.get(logical) or contracts.get(node.name)

            if contract is not None or project_contracts is not None:
                physical_table = self._format_relation_for_ref(node.name)
                ctx = runtime.build_context(
                    node=node,
                    relation=logical,
                    physical_table=physical_table,
                    contract=contract,
                    project_contracts=project_contracts,
                    is_incremental=(mat == "incremental"),
                )

                # Optional pre-coercion (default is no-op).
                if hasattr(runtime, "coerce_frame_schema"):
                    out = runtime.coerce_frame_schema(out, ctx)

                # Allow engine-specific runtime to take over Python materialization
                if mat == "table" and hasattr(runtime, "materialize_python"):
                    took_over = bool(runtime.materialize_python(ctx=ctx, df=out))

        # ---------- Materialization ----------
        if not took_over:
            if mat == "incremental":
                self._materialize_incremental(target, out, node, meta)
            elif mat == "view":
                self._materialize_view(target, out, node)
            else:
                self._materialize_relation(target, out, node)

        if ctx is not None and runtime is not None:
            runtime.verify_after_materialization(ctx=ctx)

        self._snapshot_http_ctx(node)

    # ----------------- helpers -----------------

    def _reset_http_ctx(self, node: Node) -> None:
        """Reset HTTP context for the given node if available."""
        if _http_ctx is None:
            return
        with suppress(Exception):
            _http_ctx.reset_for_node(node.name)

    def _build_python_inputs(
        self, node: Node, deps: list[str]
    ) -> tuple[list[TFrame], dict[str, TFrame]]:
        """
        Load input frames for the Python model.
        Returns:
            - args:  positional argument list in the order of `deps`
            - argmap: mapping {relation_name -> frame} for validation
        """
        args: list[TFrame] = []
        argmap: dict[str, TFrame] = {}
        for dep in deps or []:
            rel = relation_for(dep)
            df = self._read_relation(rel, node, deps)
            args.append(df)
            argmap[rel] = df
        return args, argmap

    def _execute_python_func(
        self,
        func: Callable[[Any], Any],
        args: Any,
        node: Node,
    ) -> TFrame:
        """Execute the Python function and ensure it returns a valid frame."""
        # raw = func(arg)
        raw = func(*args)
        if not self._is_frame(raw):
            raise TypeError(
                f"Python model '{node.name}' must return {self._frame_name()} DataFrame."
            )
        return cast(TFrame, raw)

    def _resolve_materialization_strategy(self, meta: dict[str, Any]) -> str:
        """
        Determine how the Python model result should be materialized.

        Returns "table" by default, but respects:
            - meta["materialized"]
            - meta["incremental"] (bool or dict) as a shortcut for incremental
              materialization.
        """
        if self._meta_is_incremental(meta):
            return "incremental"
        mat = meta.get("materialized") or "table"
        return str(mat)

    def _materialize_view(self, target: str, out: TFrame, node: Node) -> None:
        """Materialize a Python model as a backing table and expose it as a view."""
        backing = self._py_view_backing_name(target)
        self._materialize_relation(backing, out, node)
        self._create_or_replace_view_from_table(target, backing, node)

    def _materialize_incremental(
        self,
        target: str,
        out: TFrame,
        node: Node,
        meta: dict[str, Any],
    ) -> None:
        """Materialize a Python model using incremental semantics."""
        if not self._relation_exists_safely(target):
            # First run -> write full table
            self._materialize_relation(target, out, node)
            return

        if not isinstance(out, _PDDataFrame):
            # Non-pandas frames: fall back to full refresh
            self._materialize_relation(target, out, node)
            return

        df_old = self._safe_read_existing_incremental(target, node)
        if df_old is None or not isinstance(df_old, _PDDataFrame):
            # Fallback: full-refresh
            self._materialize_relation(target, out, node)
            return

        merged = self._merge_incremental_frames(df_old, out, meta, node)
        self._materialize_relation(target, merged, node)

    def _relation_exists_safely(self, target: str) -> bool:
        """Check whether the target relation exists, swallowing backend errors."""
        try:
            return bool(self.exists_relation(target))
        except Exception:
            return False

    def _safe_read_existing_incremental(self, target: str, node: Node) -> Any:
        """Try to read an existing incremental relation, swallowing backend errors."""
        try:
            return self._read_relation(target, node, deps=[])
        except Exception:
            return None

    def _merge_incremental_frames(
        self,
        df_old: _PDDataFrame,
        df_new: _PDDataFrame,
        meta: dict[str, Any],
        node: Node,
    ) -> TFrame:
        """
        Merge existing and new frames using a custom delta function if configured,
        otherwise fall back to the default incremental merge.
        """
        delta_fn_ref = meta.get("delta_python")

        if isinstance(delta_fn_ref, str) and delta_fn_ref.strip():
            delta_fn = _load_callable(delta_fn_ref)
            merged = delta_fn(
                existing=df_old,
                new=df_new,
                node=node,
                executor=self,
                meta=meta,
            )
            if not self._is_frame(merged):
                raise TypeError(
                    f"delta_python '{delta_fn_ref}' must return a DataFrame {self._frame_name()}."
                )
            return cast(TFrame, merged)

        unique_key = _normalize_unique_key(meta.get("unique_key") or meta.get("primary_key"))
        update_cols = _normalize_unique_key(
            meta.get("delta_columns")
            or meta.get("updated_at_columns")
            or meta.get("updated_at")
            or meta.get("timestamp_columns")
        )
        merged_default = _python_incremental_merge_default(df_old, df_new, unique_key, update_cols)
        return cast(TFrame, merged_default)

    def _snapshot_http_ctx(self, node: Node) -> None:
        """Store an HTTP snapshot into node.meta if HTTP context is available."""
        if _http_ctx is None:
            return

        try:
            snap = _http_ctx.snapshot()
        except Exception:
            return

        with suppress(Exception):
            if not isinstance(node.meta, dict) or not node.meta:
                node.meta = {}
            node.meta["_http_snapshot"] = snap

        requests = int(snap.get("requests") or 0)
        if requests <= 0:
            return
        cache_hits = int(snap.get("cache_hits") or 0)
        bytes_read = int(snap.get("bytes") or 0)
        offline = bool(snap.get("used_offline"))
        echo(
            f"HTTP stats for {node.name}: requests={requests} cache_hits={cache_hits} "
            f"bytes={bytes_read} offline={offline}"
        )
        if offline:
            echo(f"Node {node.name} served responses from offline cache")

    # -------- Python model view helpers (shared) --------
    def _py_view_backing_name(self, relation: str) -> str:
        """
        Backing table name for Python models materialized as views.
        Must be a valid identifier for the target engine.
        """
        return f"__ff_py_{relation}"

    @abstractmethod
    def _create_or_replace_view_from_table(
        self, view_name: str, backing_table: str, node: Node
    ) -> None:
        """
        Create (or replace) a VIEW named `view_name` that selects from `backing_table`.
        Implement engine-specific DDL here.
        """
        ...

    # ---------- SQL hook contracts ----------

    def execute_hook_sql(self, sql: str) -> None:
        """
        Execute a SQL hook block (pre-/post-run, on-run-start, on-run-end, etc.).
        """
        raise NotImplementedError(f"SQL hooks are not implemented for engine '{self.engine_name}'.")

    # ---------- SQL hook contracts ----------
    @abstractmethod
    def _format_relation_for_ref(self, name: str) -> str:
        """
        Return the engine-specific SQL identifier used to reference a model's materialised relation.
        """
        ...

    @abstractmethod
    def _format_source_reference(
        self, cfg: dict[str, Any], source_name: str, table_name: str
    ) -> str:
        """
        Return the SQL identifier used to reference a configured source.
        """
        ...

    def _apply_sql_materialization(
        self, node: Node, target_sql: str, select_body: str, materialization: str
    ) -> None:
        """
        Materialise the rendered SELECT according to the requested kind (`table`, `view`, ...).
        The default implementation delegates to `create_or_replace_*` hooks.
        """
        if materialization == "view":
            self._create_or_replace_view(target_sql, select_body, node)
        else:
            self._create_or_replace_table(target_sql, select_body, node)

    @abstractmethod
    def _create_or_replace_view(self, target_sql: str, select_body: str, node: Node) -> None:
        """
        Engine-specific implementation for CREATE OR REPLACE VIEW ... AS <body>.
        """
        ...

    @abstractmethod
    def _create_or_replace_table(self, target_sql: str, select_body: str, node: Node) -> None:
        """
        Engine-specific implementation for CREATE OR REPLACE TABLE ... AS <body>.
        """
        ...

    # ---------- Resolution helpers ----------
    def _this_identifier(self, node: Node) -> str:
        """
        Physical identifier backing {{ this }} in SQL templates.

        Engines may override to inject catalog/schema qualification.
        """
        return relation_for(node.name)

    def _format_test_table(self, table: str | None) -> str | None:
        """
        Format table identifiers for data-quality tests (fft test).

        Default behavior normalizes '.ff' suffixes only; engines can override
        to add catalog/schema qualification.
        """
        if not isinstance(table, str):
            return table
        stripped = table.strip()
        if not stripped:
            return stripped
        return relation_for(stripped) if stripped.endswith(".ff") else stripped

    def _resolve_ref(self, name: str, env: Environment) -> str:
        dep = REGISTRY.get_node(name) if hasattr(REGISTRY, "get_node") else REGISTRY.nodes[name]
        if dep.meta.get("materialized") == "ephemeral":
            return self._render_ephemeral_sql(dep.name, env)
        return self._format_relation_for_ref(name)

    def _resolve_source(self, source_name: str, table_name: str) -> str:
        group = REGISTRY.sources.get(source_name)
        if not group:
            known = ", ".join(sorted(REGISTRY.sources.keys())) or "<none>"
            raise KeyError(f"Unknown source '{source_name}'. Known sources: {known}")

        entry = group.get(table_name)
        if not entry:
            known_tables = ", ".join(sorted(group.keys())) or "<none>"
            raise KeyError(
                f"Unknown source table '{source_name}.{table_name}'. Known tables: {known_tables}"
            )

        engine_key = self.engine_name
        try:
            cfg = resolve_source_entry(entry, engine_key, default_identifier=table_name)
        except KeyError as exc:
            raise KeyError(
                f"Source {source_name}.{table_name} missing "
                f"identifier/location for engine '{engine_key}'"
            ) from exc

        cfg = dict(cfg)
        cfg.setdefault("options", {})
        return self._format_source_reference(cfg, source_name, table_name)

    # ---------- Abstract Frame-Hooks ----------
    @abstractmethod
    def _read_relation(self, relation: str, node: Node, deps: Iterable[str]) -> TFrame: ...

    @abstractmethod
    def _materialize_relation(self, relation: str, df: TFrame, node: Node) -> None: ...

    def _validate_required(
        self, node_name: str, inputs: Any, requires: dict[str, set[str]]
    ) -> None:
        """
        inputs: either TFrame (single dependency) or dict[str, TFrame] (multiple dependencies)
        raises: ValueError with a clear explanation when columns/keys are missing
        """
        if not requires:
            return

        validate_required_columns(node_name, inputs, requires)

    def _columns_of(self, frame: TFrame) -> list[str]:
        """List of columns for debug logging."""
        columns = getattr(frame, "columns", None)
        if columns is not None:
            return [str(c) for c in list(columns)]
        raise NotImplementedError("_columns_of needs to be implemented for non-pandas frame types")

    def _is_frame(self, obj: Any) -> bool:
        """Is 'obj' a valid frame for this executor?"""
        return isinstance(obj, _PDDataFrame)

    def _frame_name(self) -> str:
        """Only used when formatting error messages (default)."""
        return "a"

    # ---------- Build meta hook ----------
    def on_node_built(self, node: Node, relation: str, fingerprint: str) -> None:
        """
        Hook invoked after a node has been successfully materialized.
        Engines should override this to write/update the meta table (e.g. _ff_meta).

        Default: no-op.
        """
        return

    # ── Incremental API ───────────────────────────────────────────────
    def exists_relation(self, relation: str) -> bool:  # pragma: no cover - abstract
        """Returns True if physical relation exists (table/view)."""
        raise NotImplementedError

    def create_table_as(self, relation: str, select_sql: str) -> None:  # pragma: no cover
        """CREATE TABLE AS SELECT …"""
        raise NotImplementedError

    def incremental_insert(self, relation: str, select_sql: str) -> None:  # pragma: no cover
        """INSERT-only (Append)."""
        raise NotImplementedError

    def incremental_merge(
        self, relation: str, select_sql: str, unique_key: list[str]
    ) -> None:  # pragma: no cover
        """Best-effort UPSERT; Default fallback via staging delete+insert."""
        raise NotImplementedError

    def alter_table_sync_schema(
        self, relation: str, select_sql: str, *, mode: str = "append_new_columns"
    ) -> None:  # pragma: no cover
        """
        Optional: Additive schema synchronisation. 'mode' = append_new_columns|sync_all_columns.
        Default implementation: No-Op.
        """
        return None

    @staticmethod
    def _meta_is_incremental(meta: Mapping[str, Any] | None) -> bool:
        """
        Return True if the given meta mapping describes an incremental model.

        This mirrors the semantics of ModelConfig.is_incremental_enabled(), but
        works on a plain mapping to avoid tight coupling to the Pydantic model.
        """
        if not meta:
            return False

        incremental_cfg = meta.get("incremental")
        materialized = str(meta.get("materialized") or "").lower()

        # Explicit materialized='incremental' always wins.
        if materialized == "incremental":
            return True

        # incremental: true / false
        if isinstance(incremental_cfg, bool):
            return incremental_cfg

        # incremental: {enabled: bool, ...}
        if isinstance(incremental_cfg, dict):
            enabled = incremental_cfg.get("enabled")
            if isinstance(enabled, bool):
                return enabled
            # Default: treat presence of a dict as "enabled" if no explicit flag is set.
            return True

        # Fallback: any non-empty incremental value is treated as "enabled".
        return bool(incremental_cfg)

    # ── Snapshot API ──────────────────────────────────────────────────
    @staticmethod
    def _meta_is_snapshot(meta: Mapping[str, Any] | None) -> bool:
        """
        Return True if the given meta mapping describes a snapshot model.

        For now we define snapshots purely by materialized='snapshot'.
        """
        if not meta:
            return False
        materialized = str(meta.get("materialized") or "").lower()
        return materialized == "snapshot"

    # ---------- Unit-test helpers (to be overridden by engines) ----------

    def utest_load_relation_from_rows(self, relation: str, rows: list[dict]) -> None:
        """
        Load test input rows into a physical relation for unit tests.

        Default: not implemented. Engines that support `fft utest` should override.
        """
        raise NotImplementedError(
            f"utest_load_relation_from_rows not implemented for engine '{self.engine_name}'."
        )

    def utest_read_relation(self, relation: str) -> _PDDataFrame:
        """
        Read a physical relation into a pandas.DataFrame for unit-test assertions.

        Default: not implemented. Engines that support `fft utest` should override.
        """
        raise NotImplementedError(
            f"utest_read_relation not implemented for engine '{self.engine_name}'."
        )

    def utest_clean_target(self, relation: str) -> None:
        """
        Best-effort cleanup hook before executing a unit-test model:

        - Drop tables/views with the target name so view<->table flips
          cannot fail (DuckDB, Postgres, ...).
        - This runs *only* in `fft utest`, and we already enforce that
          utest profiles use isolated DBs/schemas.

        Default: no-op.
        """
        return

    # ── Column schema introspection hook ────────────────────────────────
    def introspect_column_physical_type(self, table: str, column: str) -> str | None:
        """
        Return the engine's physical data type for `table.column`, or None
        if it cannot be determined.

        Subclasses should override this. Default implementation raises so
        callers can surface a clear "engine not supported" message.
        """
        raise NotImplementedError(
            f"Column physical type introspection is not implemented for "
            f"engine '{self.engine_name}'."
        )

    def normalize_physical_type(self, t: str | None) -> str:
        """
        Canonicalize a physical type string for comparisons (DQ + contracts).

        Default: just strip + lower.
        Engines may override to account for dialect quirks in information_schema
        (e.g. Postgres timestamp variants, Snowflake VARCHAR(…) / NUMBER(…)).
        """
        return (t or "").strip().lower()

    def collect_docs_columns(self) -> dict[str, list[ColumnInfo]]:
        """
        Return column metadata for docs rendering keyed by physical relation name.
        Engines can override; default is empty mapping.
        """
        return {}

    # ── Seed loading hook ───────────────────────────────────────────────
    def load_seed(
        self, table: str, df: Any, schema: str | None = None
    ) -> tuple[bool, str, bool]:  # pragma: no cover - interface
        """
        Materialize a seed DataFrame into the target engine. Executors that
        support seeds should override and return True when handled.
        """
        raise NotImplementedError(
            f"Seeding is not implemented for executor engine '{self.engine_name}'."
        )

configure_contracts

configure_contracts(contracts, project_contracts)

Inject parsed contracts into this executor instance. The run engine should call this once at startup.

Source code in src/fastflowtransform/executors/base.py
148
149
150
151
152
153
154
155
156
157
158
def configure_contracts(
    self,
    contracts: Mapping[str, ContractsFileModel] | None,
    project_contracts: ProjectContractsModel | None,
) -> None:
    """
    Inject parsed contracts into this executor instance.
    The run engine should call this once at startup.
    """
    self._ff_contracts = contracts or {}
    self._ff_project_contracts = project_contracts

run_sql

run_sql(node, env)
Orchestrate SQL models

1) Render Jinja (ref/source/this) and strip leading {{ config(...) }}. 2) If the SQL is full DDL (CREATE …), execute it verbatim (passthrough). 3) Otherwise, normalize to CREATE OR REPLACE {TABLE|VIEW} AS . The body is CTE-aware (keeps WITH … SELECT … intact).

On failure, raise ModelExecutionError with a helpful snippet.

Source code in src/fastflowtransform/executors/base.py
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
def run_sql(self, node: Node, env: Environment) -> None:
    """
    Orchestrate SQL models:
      1) Render Jinja (ref/source/this) and strip leading {{ config(...) }}.
      2) If the SQL is full DDL (CREATE …), execute it verbatim (passthrough).
      3) Otherwise, normalize to CREATE OR REPLACE {TABLE|VIEW} AS <body>.
         The body is CTE-aware (keeps WITH … SELECT … intact).
    On failure, raise ModelExecutionError with a helpful snippet.
    """
    meta = getattr(node, "meta", {}) or {}
    if self._meta_is_incremental(meta):
        # Delegates to incremental engine: render, schema sync, merge/insert, etc.
        return _ff_incremental.run_or_dispatch(self, node, env)

    if self._meta_is_snapshot(meta):
        # Snapshots are executed via the dedicated CLI: `fft snapshot run`.
        raise ModelExecutionError(
            node_name=node.name,
            relation=relation_for(node.name),
            message=(
                "Snapshot models cannot be executed via 'fft run'. "
                "Use 'fft snapshot run' instead."
            ),
            sql_snippet="",
        )

    sql_rendered = self.render_sql(
        node,
        env,
        ref_resolver=lambda name: self._resolve_ref(name, env),
        source_resolver=self._resolve_source,
    )
    sql = self._strip_leading_config(sql_rendered).strip()

    materialization = (node.meta or {}).get("materialized", "table")
    if materialization == "ephemeral":
        return

    # 1) Direct DDL passthrough (CREATE [OR REPLACE] {TABLE|VIEW} …)
    if self._looks_like_direct_ddl(sql):
        try:
            self._execute_sql_direct(sql, node)
            return
        except NotImplementedError:
            # Engine doesn't implement direct DDL → fall back to normalized materialization.
            pass
        except Exception as e:
            raise ModelExecutionError(
                node_name=node.name,
                relation=relation_for(node.name),
                message=str(e),
                sql_snippet=sql,
            ) from e

    # 2) Normalized materialization path (CTE-safe body)
    body = self._selectable_body(sql).rstrip(" ;\n\t")
    target_sql = self._format_relation_for_ref(node.name)

    # Centralized SQL preview logging (applies to ALL engines)
    preview = (
        f"=== MATERIALIZE ===\n"
        f"-- model: {node.name}\n"
        f"-- materialized: {materialization}\n"
        f"-- target: {target_sql}\n"
        f"{body}\n"
    )
    echo_debug(preview)

    try:
        runtime = getattr(self, "runtime_contracts", None)
        # contracts only for TABLE materialization for now
        if runtime is not None and materialization == "table":
            contracts = getattr(self, "_ff_contracts", {}) or {}
            project_contracts = getattr(self, "_ff_project_contracts", None)

            # keying: prefer the logical table name (contracts.table),
            # but node.name or relation_for(node.name) is usually what you want.
            logical_name = relation_for(node.name)
            contract = contracts.get(logical_name) or contracts.get(node.name)

            ctx = runtime.build_context(
                node=node,
                relation=logical_name,
                physical_table=target_sql,
                contract=contract,
                project_contracts=project_contracts,
                is_incremental=self._meta_is_incremental(meta),
            )
            # Engine-specific enforcement (verify/cast/off)
            runtime.apply_sql_contracts(ctx=ctx, select_body=body)
        else:
            # Old behavior
            self._apply_sql_materialization(node, target_sql, body, materialization)
    except Exception as e:
        preview = f"-- materialized={materialization}\n-- target={target_sql}\n{body}"
        raise ModelExecutionError(
            node_name=node.name,
            relation=relation_for(node.name),
            message=str(e),
            sql_snippet=preview,
        ) from e

run_snapshot_sql

run_snapshot_sql(node, env)

Execute a SQL model materialized as 'snapshot'.

Default implementation: engines must override this or snapshots will fail with a clear error.

Source code in src/fastflowtransform/executors/base.py
367
368
369
370
371
372
373
374
375
376
def run_snapshot_sql(self, node: Node, env: Environment) -> None:
    """
    Execute a SQL model materialized as 'snapshot'.

    Default implementation: engines must override this or snapshots
    will fail with a clear error.
    """
    raise NotImplementedError(
        f"Snapshot materialization is not implemented for engine '{self.engine_name}'."
    )

execute_test_sql

execute_test_sql(stmt)

Execute a lightweight SQL statement for DQ tests.

Implementations should accept
  • str
  • (str, params dict)
  • ClauseElement (optional, where supported)
  • Sequence of the above (executed sequentially; return last result)

and return an object supporting .fetchone() / .fetchall().

Source code in src/fastflowtransform/executors/base.py
488
489
490
491
492
493
494
495
496
497
498
499
def execute_test_sql(self, stmt: Any) -> Any:  # pragma: no cover - abstract
    """
    Execute a lightweight SQL statement for DQ tests.

    Implementations should accept:
      - str
      - (str, params dict)
      - ClauseElement (optional, where supported)
      - Sequence of the above (executed sequentially; return last result)
    and return an object supporting .fetchone() / .fetchall().
    """
    raise NotImplementedError

compute_freshness_delay_minutes

compute_freshness_delay_minutes(table, ts_col)

Compute delay in minutes between now and max(ts_col) for a relation.

Returns (delay_minutes, sql_used). Default implementation is not provided; executors implement engine-specific logic.

Source code in src/fastflowtransform/executors/base.py
501
502
503
504
505
506
507
508
def compute_freshness_delay_minutes(self, table: str, ts_col: str) -> tuple[float | None, str]:
    """
    Compute delay in minutes between now and max(ts_col) for a relation.

    Returns (delay_minutes, sql_used).
    Default implementation is not provided; executors implement engine-specific logic.
    """
    raise NotImplementedError

configure_query_budget_limit

configure_query_budget_limit(limit)

Inject a configured per-query byte limit (e.g. from budgets.yml).

Source code in src/fastflowtransform/executors/base.py
575
576
577
578
579
580
581
582
583
584
585
586
587
def configure_query_budget_limit(self, limit: int | None) -> None:
    """
    Inject a configured per-query byte limit (e.g. from budgets.yml).
    """
    if limit is None:
        self._ff_configured_query_limit = None
        return
    try:
        iv = int(limit)
    except Exception:
        self._ff_configured_query_limit = None
        return
    self._ff_configured_query_limit = iv if iv > 0 else None

reset_node_stats

reset_node_stats()

Reset per-node statistics buffer.

The run engine calls this before executing a model so that all stats recorded via _record_query_stats(...) belong to that node.

Source code in src/fastflowtransform/executors/base.py
627
628
629
630
631
632
633
634
635
def reset_node_stats(self) -> None:
    """
    Reset per-node statistics buffer.

    The run engine calls this before executing a model so that all
    stats recorded via `_record_query_stats(...)` belong to that node.
    """
    # just clear the buffer; next recording will re-create it
    self._ff_query_stats_buffer = []

get_node_stats

get_node_stats()

Aggregate buffered QueryStats into a simple dict:

{
  "bytes_scanned": <sum>,
  "rows": <sum>,
  "query_duration_ms": <sum>,
}

Called by the run engine after a node finishes.

Source code in src/fastflowtransform/executors/base.py
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
def get_node_stats(self) -> dict[str, int]:
    """
    Aggregate buffered QueryStats into a simple dict:

        {
          "bytes_scanned": <sum>,
          "rows": <sum>,
          "query_duration_ms": <sum>,
        }

    Called by the run engine after a node finishes.
    """
    stats_list = self._drain_query_stats()
    if not stats_list:
        return {}

    total_bytes = 0
    total_rows = 0
    total_duration = 0

    for s in stats_list:
        if s.bytes_processed is not None:
            total_bytes += int(s.bytes_processed)
        if s.rows is not None:
            total_rows += int(s.rows)
        if s.duration_ms is not None:
            total_duration += int(s.duration_ms)

    return {
        "bytes_scanned": total_bytes,
        "rows": total_rows,
        "query_duration_ms": total_duration,
    }

run_python

run_python(node)

Execute the Python model for a given node and materialize its result.

Source code in src/fastflowtransform/executors/base.py
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
def run_python(self, node: Node) -> None:
    """Execute the Python model for a given node and materialize its result."""
    func = REGISTRY.py_funcs[node.name]
    deps = REGISTRY.nodes[node.name].deps or []

    self._reset_http_ctx(node)

    args, argmap = self._build_python_inputs(node, deps)
    requires = REGISTRY.py_requires.get(node.name, {})
    if deps:
        # Required-columns check works against the mapping
        self._validate_required(node.name, argmap, requires)

    # out = self._execute_python_func(func, arg, node)
    out = self._execute_python_func(func, args, node)

    target = relation_for(node.name)
    meta = getattr(node, "meta", {}) or {}
    mat = self._resolve_materialization_strategy(meta)

    # ---------- Runtime contracts for Python models ----------
    runtime = getattr(self, "runtime_contracts", None)
    ctx = None
    took_over = False

    if runtime is not None:
        contracts = getattr(self, "_ff_contracts", {}) or {}
        project_contracts = getattr(self, "_ff_project_contracts", None)

        logical = target  # usually relation_for(node.name)
        contract = contracts.get(logical) or contracts.get(node.name)

        if contract is not None or project_contracts is not None:
            physical_table = self._format_relation_for_ref(node.name)
            ctx = runtime.build_context(
                node=node,
                relation=logical,
                physical_table=physical_table,
                contract=contract,
                project_contracts=project_contracts,
                is_incremental=(mat == "incremental"),
            )

            # Optional pre-coercion (default is no-op).
            if hasattr(runtime, "coerce_frame_schema"):
                out = runtime.coerce_frame_schema(out, ctx)

            # Allow engine-specific runtime to take over Python materialization
            if mat == "table" and hasattr(runtime, "materialize_python"):
                took_over = bool(runtime.materialize_python(ctx=ctx, df=out))

    # ---------- Materialization ----------
    if not took_over:
        if mat == "incremental":
            self._materialize_incremental(target, out, node, meta)
        elif mat == "view":
            self._materialize_view(target, out, node)
        else:
            self._materialize_relation(target, out, node)

    if ctx is not None and runtime is not None:
        runtime.verify_after_materialization(ctx=ctx)

    self._snapshot_http_ctx(node)

execute_hook_sql

execute_hook_sql(sql)

Execute a SQL hook block (pre-/post-run, on-run-start, on-run-end, etc.).

Source code in src/fastflowtransform/executors/base.py
926
927
928
929
930
def execute_hook_sql(self, sql: str) -> None:
    """
    Execute a SQL hook block (pre-/post-run, on-run-start, on-run-end, etc.).
    """
    raise NotImplementedError(f"SQL hooks are not implemented for engine '{self.engine_name}'.")

on_node_built

on_node_built(node, relation, fingerprint)

Hook invoked after a node has been successfully materialized. Engines should override this to write/update the meta table (e.g. _ff_meta).

Default: no-op.

Source code in src/fastflowtransform/executors/base.py
1065
1066
1067
1068
1069
1070
1071
1072
def on_node_built(self, node: Node, relation: str, fingerprint: str) -> None:
    """
    Hook invoked after a node has been successfully materialized.
    Engines should override this to write/update the meta table (e.g. _ff_meta).

    Default: no-op.
    """
    return

exists_relation

exists_relation(relation)

Returns True if physical relation exists (table/view).

Source code in src/fastflowtransform/executors/base.py
1075
1076
1077
def exists_relation(self, relation: str) -> bool:  # pragma: no cover - abstract
    """Returns True if physical relation exists (table/view)."""
    raise NotImplementedError

create_table_as

create_table_as(relation, select_sql)

CREATE TABLE AS SELECT …

Source code in src/fastflowtransform/executors/base.py
1079
1080
1081
def create_table_as(self, relation: str, select_sql: str) -> None:  # pragma: no cover
    """CREATE TABLE AS SELECT …"""
    raise NotImplementedError

incremental_insert

incremental_insert(relation, select_sql)

INSERT-only (Append).

Source code in src/fastflowtransform/executors/base.py
1083
1084
1085
def incremental_insert(self, relation: str, select_sql: str) -> None:  # pragma: no cover
    """INSERT-only (Append)."""
    raise NotImplementedError

incremental_merge

incremental_merge(relation, select_sql, unique_key)

Best-effort UPSERT; Default fallback via staging delete+insert.

Source code in src/fastflowtransform/executors/base.py
1087
1088
1089
1090
1091
def incremental_merge(
    self, relation: str, select_sql: str, unique_key: list[str]
) -> None:  # pragma: no cover
    """Best-effort UPSERT; Default fallback via staging delete+insert."""
    raise NotImplementedError

alter_table_sync_schema

alter_table_sync_schema(relation, select_sql, *, mode='append_new_columns')

Optional: Additive schema synchronisation. 'mode' = append_new_columns|sync_all_columns. Default implementation: No-Op.

Source code in src/fastflowtransform/executors/base.py
1093
1094
1095
1096
1097
1098
1099
1100
def alter_table_sync_schema(
    self, relation: str, select_sql: str, *, mode: str = "append_new_columns"
) -> None:  # pragma: no cover
    """
    Optional: Additive schema synchronisation. 'mode' = append_new_columns|sync_all_columns.
    Default implementation: No-Op.
    """
    return None

utest_load_relation_from_rows

utest_load_relation_from_rows(relation, rows)

Load test input rows into a physical relation for unit tests.

Default: not implemented. Engines that support fft utest should override.

Source code in src/fastflowtransform/executors/base.py
1150
1151
1152
1153
1154
1155
1156
1157
1158
def utest_load_relation_from_rows(self, relation: str, rows: list[dict]) -> None:
    """
    Load test input rows into a physical relation for unit tests.

    Default: not implemented. Engines that support `fft utest` should override.
    """
    raise NotImplementedError(
        f"utest_load_relation_from_rows not implemented for engine '{self.engine_name}'."
    )

utest_read_relation

utest_read_relation(relation)

Read a physical relation into a pandas.DataFrame for unit-test assertions.

Default: not implemented. Engines that support fft utest should override.

Source code in src/fastflowtransform/executors/base.py
1160
1161
1162
1163
1164
1165
1166
1167
1168
def utest_read_relation(self, relation: str) -> _PDDataFrame:
    """
    Read a physical relation into a pandas.DataFrame for unit-test assertions.

    Default: not implemented. Engines that support `fft utest` should override.
    """
    raise NotImplementedError(
        f"utest_read_relation not implemented for engine '{self.engine_name}'."
    )

utest_clean_target

utest_clean_target(relation)

Best-effort cleanup hook before executing a unit-test model:

  • Drop tables/views with the target name so view<->table flips cannot fail (DuckDB, Postgres, ...).
  • This runs only in fft utest, and we already enforce that utest profiles use isolated DBs/schemas.

Default: no-op.

Source code in src/fastflowtransform/executors/base.py
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
def utest_clean_target(self, relation: str) -> None:
    """
    Best-effort cleanup hook before executing a unit-test model:

    - Drop tables/views with the target name so view<->table flips
      cannot fail (DuckDB, Postgres, ...).
    - This runs *only* in `fft utest`, and we already enforce that
      utest profiles use isolated DBs/schemas.

    Default: no-op.
    """
    return

introspect_column_physical_type

introspect_column_physical_type(table, column)

Return the engine's physical data type for table.column, or None if it cannot be determined.

Subclasses should override this. Default implementation raises so callers can surface a clear "engine not supported" message.

Source code in src/fastflowtransform/executors/base.py
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
def introspect_column_physical_type(self, table: str, column: str) -> str | None:
    """
    Return the engine's physical data type for `table.column`, or None
    if it cannot be determined.

    Subclasses should override this. Default implementation raises so
    callers can surface a clear "engine not supported" message.
    """
    raise NotImplementedError(
        f"Column physical type introspection is not implemented for "
        f"engine '{self.engine_name}'."
    )

normalize_physical_type

normalize_physical_type(t)

Canonicalize a physical type string for comparisons (DQ + contracts).

Default: just strip + lower. Engines may override to account for dialect quirks in information_schema (e.g. Postgres timestamp variants, Snowflake VARCHAR(…) / NUMBER(…)).

Source code in src/fastflowtransform/executors/base.py
1197
1198
1199
1200
1201
1202
1203
1204
1205
def normalize_physical_type(self, t: str | None) -> str:
    """
    Canonicalize a physical type string for comparisons (DQ + contracts).

    Default: just strip + lower.
    Engines may override to account for dialect quirks in information_schema
    (e.g. Postgres timestamp variants, Snowflake VARCHAR(…) / NUMBER(…)).
    """
    return (t or "").strip().lower()

collect_docs_columns

collect_docs_columns()

Return column metadata for docs rendering keyed by physical relation name. Engines can override; default is empty mapping.

Source code in src/fastflowtransform/executors/base.py
1207
1208
1209
1210
1211
1212
def collect_docs_columns(self) -> dict[str, list[ColumnInfo]]:
    """
    Return column metadata for docs rendering keyed by physical relation name.
    Engines can override; default is empty mapping.
    """
    return {}

load_seed

load_seed(table, df, schema=None)

Materialize a seed DataFrame into the target engine. Executors that support seeds should override and return True when handled.

Source code in src/fastflowtransform/executors/base.py
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
def load_seed(
    self, table: str, df: Any, schema: str | None = None
) -> tuple[bool, str, bool]:  # pragma: no cover - interface
    """
    Materialize a seed DataFrame into the target engine. Executors that
    support seeds should override and return True when handled.
    """
    raise NotImplementedError(
        f"Seeding is not implemented for executor engine '{self.engine_name}'."
    )