Skip to content

fastflowtransform.decorators

model

model(name=None, deps=None, require=None, requires=None, *, tags=None, kind='python', materialized=None, meta=None)

Decorator to register a Python model.

Parameters:

Name Type Description Default
name str | None

Logical node name in the DAG (defaults to function name).

None
deps Sequence[str] | None

Upstream node names (e.g., ['users.ff']).

None
require Any | None

Required columns per dependency; accepted shapes mirror requires.

None
requires Any | None

Alias for require (only one of require/requires may be set). - Single dependency: Iterable[str] of required columns from that dependency. - Multiple dependencies: Mapping[dep_name, Iterable[str]] (dep_name = logical name or physical relation).

None
tags Sequence[str] | None

Optional tags for selection (e.g. ['demo','env']).

None
kind str

Logical kind; defaults to 'python' (useful for selectors kind:python).

'python'
materialized str | None

Shorthand for meta['materialized']; mirrors config(materialized='...').

None
meta Mapping[str, Any] | None

Arbitrary metadata for executors/docs (merged with materialized if provided).

None
Source code in src/fastflowtransform/decorators.py
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
def model(
    name: str | None = None,
    deps: Sequence[str] | None = None,
    require: Any | None = None,
    requires: Any | None = None,
    *,
    tags: Sequence[str] | None = None,
    kind: str = "python",
    materialized: str | None = None,
    meta: Mapping[str, Any] | None = None,
) -> Callable[[Callable[P, R_co]], HasFFMeta[P, R_co]]:
    """
    Decorator to register a Python model.

    Args:
        name: Logical node name in the DAG (defaults to function name).
        deps: Upstream node names (e.g., ['users.ff']).
        require: Required columns per dependency; accepted shapes mirror `requires`.
        requires: Alias for `require` (only one of require/requires may be set).
            - Single dependency: Iterable[str] of required columns from that dependency.
            - Multiple dependencies: Mapping[dep_name, Iterable[str]]
              (dep_name = logical name or physical relation).
        tags: Optional tags for selection (e.g. ['demo','env']).
        kind: Logical kind; defaults to 'python' (useful for selectors kind:python).
        materialized: Shorthand for meta['materialized']; mirrors config(materialized='...').
        meta: Arbitrary metadata for executors/docs (merged with materialized if provided).
    """
    # Normalize the alias: allow only one of require/requires
    if require is not None and requires is not None:
        raise TypeError("Pass at most one of 'require' or 'requires', not both")

    effective_require = require if require is not None else requires

    def deco(func: Callable[P, R_co]) -> HasFFMeta[P, R_co]:
        f_any = cast(Any, func)

        fname = name or f_any.__name__
        fdeps = list(deps) if deps is not None else []

        # Attach metadata to the function (keeps backward compatibility)
        f_any.__ff_name__ = fname
        f_any.__ff_deps__ = fdeps

        # Normalize require and mirror it on the function and inside the registry
        req_norm = _normalize_require(fdeps, effective_require)
        f_any.__ff_require__ = req_norm  # useful for tooling/loaders
        REGISTRY.py_requires[fname] = req_norm  # executors read this directly

        f_any.__ff_tags__ = list(tags) if tags else []
        f_any.__ff_kind__ = kind or "python"

        metadata = dict(meta) if meta else {}
        if materialized is not None:
            metadata["materialized"] = materialized
        f_any.__ff_meta__ = metadata

        # Determine the source path (better error message if it fails)
        src: str | None = inspect.getsourcefile(func)
        if src is None:
            try:
                src = inspect.getfile(func)
            except Exception as e:
                raise ModuleLoadError(
                    f"Cannot determine source path for model '{fname}': {e}"
                ) from e

        f_any.__ff_path__ = Path(src).resolve()

        # Register the function
        REGISTRY.py_funcs[fname] = func
        return cast(HasFFMeta[P, R_co], func)

    return deco

engine_model

engine_model(*, only=None, env_match=None, **model_kwargs)

Env-aware decorator to register a Python model only when the current environment matches.

Parameters:

Name Type Description Default
only str | Iterable[str] | None

Backwards compatible engine filter based on FF_ENGINE (e.g. only="bigquery" or only=("duckdb", "postgres")).

None
env_match Mapping[str, str] | None

Arbitrary environment match, e.g.: env_match={"FF_ENGINE": "bigquery", "FF_ENGINE_VARIANT": "bigframes"}

None
Source code in src/fastflowtransform/decorators.py
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
def engine_model(
    *,
    only: str | Iterable[str] | None = None,
    env_match: Mapping[str, str] | None = None,
    **model_kwargs: Any,
) -> Callable[[Callable[P, R_co]], HasFFMeta[P, R_co] | Callable[P, R_co]]:
    """
    Env-aware decorator to register a Python model only when the current
    environment matches.

    Args:
        only:
            Backwards compatible engine filter based on FF_ENGINE
            (e.g. only="bigquery" or only=("duckdb", "postgres")).
        env_match:
            Arbitrary environment match, e.g.:
                env_match={"FF_ENGINE": "bigquery", "FF_ENGINE_VARIANT": "bigframes"}
    """

    # Normalize "only" → allowed engine names (lowercased)
    allowed_engines: set[str] | None = None
    if only is not None:
        if isinstance(only, str):
            allowed_engines = {only.lower()}
        else:
            allowed_engines = {str(e).lower() for e in only}

    def should_register() -> bool:
        # 1) Check env_match if provided
        if env_match:
            for key, expected in env_match.items():
                if os.getenv(key) != expected:
                    return False

        # 2) Check FF_ENGINE against "only" if provided
        if allowed_engines is not None:
            current = os.getenv("FF_ENGINE", "").lower()
            if current not in allowed_engines:
                return False

        return True

    def deco(fn: Callable[P, R_co]) -> HasFFMeta[P, R_co] | Callable[P, R_co]:
        if should_register():
            # Register in REGISTRY and attach __ff_* metadata
            return model(**model_kwargs)(fn)
        # No registration in this env → return the plain function
        return fn

    return deco

dq_test

dq_test(name=None, *, overwrite=False, params_model=None)

Decorator to register a custom data-quality test runner.

Usage:

from fastflowtransform import dq_test

@dq_test("email_domain_allowed")
def email_domain_allowed(executor, table, column, params):
    ...
    return True, None, "select ..."

If name is omitted, the function name is used:

@dq_test()
def email_sanity(executor, table, column, params):
    ...

# In project.yml / schema.yml: type: email_sanity

Params model:

class EmailTestParams(DQParamsBase):
    allowed_domains: list[str]

@dq_test("email_domain_allowed", params_model=EmailTestParams)
def email_domain_allowed(executor, table, column, params: EmailTestParams):
    ...

Parameters:

Name Type Description Default
name str | None

Optional explicit test name. If None, fn.name is used.

None
overwrite bool

If True, allow overriding an existing test name.

False
params_model type[BaseModel] | None

Optional Pydantic model to validate params. If omitted, DQParamsBase (extra='forbid') is used.

None
Source code in src/fastflowtransform/decorators.py
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
def dq_test(
    name: str | None = None,
    *,
    overwrite: bool = False,
    params_model: type[BaseModel] | None = None,
) -> Callable[[Callable[..., Any]], Runner]:
    """
    Decorator to register a custom data-quality test runner.

    Usage:

        from fastflowtransform import dq_test

        @dq_test("email_domain_allowed")
        def email_domain_allowed(executor, table, column, params):
            ...
            return True, None, "select ..."

    If `name` is omitted, the function name is used:

        @dq_test()
        def email_sanity(executor, table, column, params):
            ...

        # In project.yml / schema.yml: type: email_sanity

    Params model:

        class EmailTestParams(DQParamsBase):
            allowed_domains: list[str]

        @dq_test("email_domain_allowed", params_model=EmailTestParams)
        def email_domain_allowed(executor, table, column, params: EmailTestParams):
            ...

    Args:
        name: Optional explicit test name. If None, fn.__name__ is used.
        overwrite: If True, allow overriding an existing test name.
        params_model: Optional Pydantic model to validate `params`.
                      If omitted, DQParamsBase (extra='forbid') is used.
    """

    def decorator(fn: Callable[..., Any]) -> Runner:
        # Prefer attribute __name__ when available; fallback is just a placeholder.
        if name is not None:
            reg_name: str = name
        else:
            reg_name = cast(str, getattr(fn, "__name__", "<anonymous_test>"))

        pm = params_model or DQParamsBase

        # Central registration so test_cmd can pick up the params schema
        register_python_test(reg_name, fn, params_model=pm, overwrite=overwrite)

        # Attach a bit of metadata (not required, but can be handy for debugging/introspection)
        fn_any = cast(Any, fn)
        fn_any.__ff_test_name__ = reg_name
        fn_any.__ff_test_params_model__ = pm

        # Type-wise, fn already matches Runner's call signature at runtime
        return cast(Runner, fn)

    return decorator