Skip to content

fastflowtransform.api.http

get

get(url, *, params=None, headers=None, ttl=None, paginator=None, timeout=None)

Raw GET with optional FS cache and simple pagination. If paginator is provided, it should return {"next_request": {"url": "...", "params": {...}}} or None. When pagination is active the result is a list of response bodies; otherwise a single bytes object is returned.

Source code in src/fastflowtransform/api/http.py
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
def get(
    url: str,
    *,
    params: dict | None = None,
    headers: dict | None = None,
    ttl: int | None = None,
    paginator: Callable[[str, dict | None, Any], dict | None] | None = None,
    timeout: float | None = None,
) -> bytes | list[bytes]:
    """
    Raw GET with optional FS cache and simple pagination.
    If paginator is provided, it should return
    {"next_request": {"url": "...", "params": {...}}} or None.
    When pagination is active the result is a list of response bodies; otherwise
    a single bytes object is returned.
    """
    if not _domain_ok(url):
        raise RuntimeError(f"HTTP domain not allowed by FF_HTTP_ALLOWED_DOMAINS: {url}")

    ttl = _DEF_TTL if ttl is None else ttl
    headers = dict(headers or {})

    if paginator is None:
        body, _ = _request_with_cache("GET", url, params, headers, ttl, timeout)
        return body

    pages = _collect_pages(
        "GET",
        url,
        params,
        headers,
        ttl,
        timeout,
        paginator,
        keep_payload=False,
        payload_factory=_maybe_json_payload,
    )
    return [body for body, _, _ in pages]

get_json

get_json(url, *, params=None, headers=None, ttl=None, paginator=None, timeout=None)

GET returning parsed JSON. If paginator is provided, it follows pages via callback.

Source code in src/fastflowtransform/api/http.py
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
def get_json(
    url: str,
    *,
    params: dict | None = None,
    headers: dict | None = None,
    ttl: int | None = None,
    paginator: Callable[[str, dict | None, Any], dict | None] | None = None,
    timeout: float | None = None,
) -> Any:
    """GET returning parsed JSON. If paginator is provided, it follows pages via callback."""
    ttl = _DEF_TTL if ttl is None else ttl
    headers = dict(headers or {})
    pages = _collect_pages(
        "GET",
        url,
        params,
        headers,
        ttl,
        timeout,
        paginator,
        keep_payload=True,
        payload_factory=_json_payload,
    )
    payloads = [payload for _, _, payload in pages]
    return payloads[0] if paginator is None else payloads

get_df

get_df(url, *, params=None, headers=None, ttl=None, paginator=None, json_path=None, record_path=None, meta=None, dtype=None, timeout=None, normalize=False, output='pandas', session=None)

GET JSON and normalize into a DataFrame using pandas.json_normalize. If paginator is provided, concatenates pages over the same normalization logic.

Parameters

record_path : Sequence[str] | None Path to the list in the JSON to be normalized. meta : Sequence[str | Sequence[str]] | None Columns to include as metadata (top-level keys or nested paths). output : {"pandas","spark","bigframes"} Controls the returned frame type. "pandas" (default) yields a pandas DataFrame. "spark" materialises a pyspark.sql.DataFrame using the provided session (or an active/builder session). "bigframes" returns a BigFrames DataFrame (requires bigframes). session : Any | None Optional backend handle. For Spark, pass a SparkSession; otherwise the active session or a new one is used.

Source code in src/fastflowtransform/api/http.py
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
def get_df(
    url: str,
    *,
    params: dict | None = None,
    headers: dict | None = None,
    ttl: int | None = None,
    paginator: Callable[[str, dict | None, Any], dict | None] | None = None,
    json_path: list[str] | None = None,
    record_path: Sequence[str] | None = None,
    meta: MetaArgIn | None = None,
    dtype: dict[str, str] | None = None,
    timeout: float | None = None,
    normalize: bool = False,
    output: OutputBackend = "pandas",
    session: Any | None = None,
) -> Any:
    """
    GET JSON and normalize into a DataFrame using pandas.json_normalize.
    If `paginator` is provided, concatenates pages over the same normalization logic.

    Parameters
    ----------
    record_path : Sequence[str] | None
        Path to the list in the JSON to be normalized.
    meta : Sequence[str | Sequence[str]] | None
        Columns to include as metadata (top-level keys or nested paths).
    output : {"pandas","spark","bigframes"}
        Controls the returned frame type. "pandas" (default) yields a pandas DataFrame.
        "spark" materialises a pyspark.sql.DataFrame using the provided session
        (or an active/builder session).
        "bigframes" returns a BigFrames DataFrame (requires `bigframes`).
    session : Any | None
        Optional backend handle. For Spark, pass a SparkSession;
        otherwise the active session or a new one is used.
    """

    def _extract(obj: Any) -> Any:
        """Follow json_path (if provided) into nested JSON."""
        cur = obj
        for k in json_path or []:
            cur = cur.get(k) if isinstance(cur, dict) else None
        return cur

    def _coerce_meta(m: MetaArgIn) -> MetaParamOut:
        """
        Return a value whose static type is exactly:
            str | list[str | list[str]] | None
        """
        if m is None:
            return None
        # Build a list whose element type is (str | list[str])
        out: list[MetaEntry] = []
        for elem in m:
            if isinstance(elem, str):
                out.append(elem)  # str
            else:
                out.append(list(elem))  # Sequence[str] -> list[str]
        return out  # list[MetaEntry] == list[str | list[str]]

    def _to_df(js: Any) -> pd.DataFrame:
        base = _extract(js)
        base = base if base is not None else js
        if record_path:
            rp = list(record_path) if record_path else None
            meta_param = _coerce_meta(meta)
            df = pd.json_normalize(base, record_path=rp, meta=meta_param)
        # if it's a list of dicts
        elif isinstance(base, list):
            df = pd.json_normalize(base, sep=".") if normalize else pd.DataFrame(base)
        else:
            df = pd.json_normalize(base, sep=".") if normalize else pd.json_normalize(base)
        if dtype:
            # Use DataFrame.astype with a mapping to avoid Series.astype overload issues.
            try:
                df = df.astype(cast(Any, dict(dtype)), copy=False)
            except Exception:
                # Best-effort fallback, still via DataFrame.astype (no Series.astype)
                for col, dt in dtype.items():
                    with suppress(Exception):
                        df = df.astype({col: cast(Any, dt)}, copy=False)
        return df

    def _finalize(pdf: pd.DataFrame) -> Any:
        mode = (output or "pandas").lower()
        if mode == "pandas":
            return pdf
        if mode == "spark":
            try:
                from pyspark.sql import SparkSession  # noqa: PLC0415
            except Exception as exc:  # pragma: no cover - pyspark optional dependency
                raise RuntimeError(
                    "get_df(..., output='spark') requires pyspark to be installed."
                ) from exc
            spark = session
            if spark is None:
                spark = SparkSession.getActiveSession()
            if spark is None:
                spark = SparkSession.builder.getOrCreate()
            return spark.createDataFrame(pdf)
        if mode == "bigframes":
            try:
                import bigframes.pandas as bpd  # noqa: PLC0415
            except Exception as exc:  # pragma: no cover - bigframes optional dependency
                raise RuntimeError(
                    "get_df(..., output='bigframes') requires the 'bigframes' package."
                ) from exc
            return bpd.DataFrame(pdf)
        raise ValueError(
            f"Unsupported output backend '{output}' (expected pandas|spark|bigframes)."
        )

    if paginator is None:
        js = get_json(url, params=params, headers=headers, ttl=ttl, timeout=timeout)
        return _finalize(_to_df(js))

    pages = get_json(
        url, params=params, headers=headers, ttl=ttl, paginator=paginator, timeout=timeout
    )
    frames = []
    for js in pages if isinstance(pages, list) else [pages]:
        frames.append(_to_df(js))
    if not frames:
        return _finalize(pd.DataFrame())
    return _finalize(pd.concat(frames, ignore_index=True))